Back to Search
Start Over
The binding capacity of α1β1-, α2β1- and α10β1-integrins depends on non-collagenous surface macromolecules rather than the collagens in cartilage fibrils
- Source :
- Matrix Biology. 63:91-105
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- Interactions of cells with supramolecular aggregates of the extracellular matrix (ECM) are mediated, in part, by cell surface receptors of the integrin family. These are important molecular components of cell surface-suprastructures regulating cellular activities in general. A subfamily of β1-integrins with von Willebrand-factor A-like domains (I-domains) in their α-chains can bind to collagen molecules and, therefore, are considered as important cellular mechano-receptors. Here we show that chondrocytes strongly bind to cartilage collagens in the form of individual triple helical molecules but very weakly to fibrils formed by the same molecules. We also find that chondrocyte integrins α1β1-, α2β1- and α10β1-integrins and their I-domains have the same characteristics. Nevertheless we find integrin binding to mechanically generated cartilage fibril fragments, which also comprise peripheral non-collagenous material. We conclude that cell adhesion results from binding of integrin-containing adhesion suprastructures to the non-collagenous fibril periphery but not to the collagenous fibril cores. The biological importance of the well-investigated recognition of collagen molecules by integrins is unknown. Possible scenarios may include fibrillogenesis, fibril degradation and/or phagocytosis, recruitment of cells to remodeling sites, or molecular signaling across cytoplasmic membranes. In these circumstances, collagen molecules may lack a fibrillar organization. However, other processes requiring robust biomechanical functions, such as fibril organization in tissues, cell division, adhesion, or migration, do not involve direct integrin-collagen interactions.
- Subjects :
- Cartilage, Articular
0301 basic medicine
Biochemistry & Molecular Biology
Fibrillar Collagens
Integrin
Chick Embryo
Fibril
Chondrocyte
Integrin alpha1beta1
Extracellular matrix
03 medical and health sciences
Chondrocytes
0302 clinical medicine
Mechanoreception
Adaptor proteins
Cell Adhesion
medicine
Animals
Humans
Cell adhesion
Discoidin Domain Receptors
Molecular Biology
Cells, Cultured
Integrin binding
Suprastructure
biology
Cell adhesion molecule
Chemistry
Cell-matrix-interactions
Fibrillogenesis
06 Biological Sciences
Cell biology
Immobilized Proteins
030104 developmental biology
medicine.anatomical_structure
030220 oncology & carcinogenesis
biology.protein
Cattle
Integrin alpha2beta1
Integrin alpha Chains
Protein Binding
Subjects
Details
- ISSN :
- 0945053X
- Volume :
- 63
- Database :
- OpenAIRE
- Journal :
- Matrix Biology
- Accession number :
- edsair.doi.dedup.....990fd92db5747495e7422090dee86b64
- Full Text :
- https://doi.org/10.1016/j.matbio.2017.02.001