Back to Search Start Over

Continuous-time modeling of cell fate determination in Arabidopsis flowers

Authors :
Maarten de Gee
Jaap Molenaar
Kerstin Kaufmann
Aalt D. J. van Dijk
Roeland C. H. J. van Ham
Simon van Mourik
Richard G. H. Immink
Gerco C. Angenent
Source :
BMC Systems Biology 4 (2010), BMC Systems Biology, Vol 4, Iss 1, p 101 (2010), BMC Systems Biology, BMC Systems Biology, 4
Publication Year :
2010

Abstract

Background The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored. Results We propose an ordinary differential equation (ODE) model that describes the gene expression dynamics of a gene regulatory network that controls floral organ formation in the model plant Arabidopsis thaliana. In this model, the dimerization of MADS-box transcription factors is incorporated explicitly. The unknown parameters are estimated from (known) experimental expression data. The model is validated by simulation studies of known mutant plants. Conclusions The proposed model gives realistic predictions with respect to independent mutation data. A simulation study is carried out to predict the effects of a new type of mutation that has so far not been made in Arabidopsis, but that could be used as a severe test of the validity of the model. According to our predictions, the role of dimers is surprisingly important. Moreover, the functional loss of any dimer leads to one or more phenotypic alterations.

Details

Language :
English
ISSN :
17520509
Database :
OpenAIRE
Journal :
BMC Systems Biology 4 (2010), BMC Systems Biology, Vol 4, Iss 1, p 101 (2010), BMC Systems Biology, BMC Systems Biology, 4
Accession number :
edsair.doi.dedup.....98e961aef76598aa6369cad1a762656a