Back to Search Start Over

Deep learning approaches for bone and bone lesion segmentation on 18FDG PET/CT imaging in the context of metastatic breast cancer

Authors :
Gianmarco Santini
Mario Campone
Mathilde Colombié
and Nicolas Normand
Mathieu Rubeaux
Ludovic Ferrer
Constance Fourcade
Camille Guillerminet
Marie Lacombe
Caroline Rousseau
Noémie Moreau
Image Perception Interaction (IPI)
Laboratoire des Sciences du Numérique de Nantes (LS2N)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Keosys
Institut de Cancérologie de l'Ouest [Angers/Nantes] (UNICANCER/ICO)
UNICANCER
Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE)
Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)
Signal, IMage et Son (SIMS )
Image Perception Interaction (LS2N - équipe IPI)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)
Signal, IMage et Son (LS2N - équipe SIMS )
Fourcade, Constance
Source :
EMBC, EMBC-Engineering in Medecine and Biology Conference, EMBC-Engineering in Medecine and Biology Conference, Jul 2020, Montréal, Canada. ⟨10.1109/EMBC44109.2020.9175904⟩
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

International audience; 18 FDG PET/CT imaging is commonly used in diagnosis and follow-up of metastatic breast cancer, but its quantitative analysis is complicated by the number and location heterogeneity of metastatic lesions. Considering that bones are the most common location among metastatic sites, this work aims to compare different approaches to segment the bones and bone metastatic lesions in breast cancer. Two deep learning methods based on U-Net were developed and trained to segment either both bones and bone lesions or bone lesions alone on PET/CT images. These methods were cross-validated on 24 patients from the prospective EPICURE seinmeta metastatic breast cancer study and were evaluated using recall and precision to measure lesion detection, as well as the Dice score to assess bones and bone lesions segmentation accuracy. Results show that taking into account bone information in the training process allows to improve the precision of the lesions detection as well as the Dice score of the segmented lesions. Moreover, using the obtained bone and bone lesion masks, we were able to compute a PET bone index (PBI) inspired by the recognized Bone Scan Index (BSI). This automatically computed PBI globally agrees with the one calculated from ground truth delineations. Clinical relevance - We propose a completely automatic deep learning based method to detect and segment bones and bone lesions on 18 FDG PET/CT in the context of metastatic breast cancer. We also introduce an automatic PET bone index which could be incorporated in the monitoring and decision process.

Details

Database :
OpenAIRE
Journal :
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Accession number :
edsair.doi.dedup.....98e0aea2d0533563851ff53d1938467f