Back to Search
Start Over
Hepatocyte specific deletion of farnesoid X receptor delays, but does not inhibit liver regeneration after partial hepatectomy in mice
- Publication Year :
- 2012
-
Abstract
- Farnesoid X receptor (FXR), the primary bile acid–sensing nuclear receptor, also plays a role in the stimulation of liver regeneration. Whole body deletion of FXR results in significant inhibition of liver regeneration after partial hepatectomy (PHX). FXR is expressed in the liver and intestines, and recent reports indicate that FXR regulates a distinct set of genes in a tissue-specific manner. These data raise a question about the relative contribution of hepatic and intestinal FXR in the regulation of liver regeneration. We studied liver regeneration after PHX in hepatocyte-specific FXR knockout (hepFXR-KO) mice over a time course of 0-14 days. Whereas the overall kinetics of liver regrowth in hepFXR-KO mice was unaffected, a delay in peak hepatocyte proliferation from day 2 to day 3 after PHX was observed in hepFXR-KO mice compared with Cre− control mice. Real-time polymerase chain reaction, western blot and co-immunoprecipitation studies revealed decreased cyclin D1 expression and decreased association of cyclin D1 with CDK4 in hepFXR-KO mice after PHX, correlating with decreased phosphorylation of the Rb protein and delayed cell proliferation in the hepFXR-KO livers. The hepFXR-KO mice also exhibited delay in acute hepatic fat accumulation following PHX, which is associated with regulation of cell cycle. Further, a significant delay in hepatocyte growth factor–initiated signaling, including the AKT, c-myc, and extracellular signal-regulated kinase 1/2 pathways, was observed in hepFXR-KO mice. Ultraperformance liquid chromatography/mass spectroscopy analysis of hepatic bile acids indicated no difference in levels of bile acids in hepFXR-KO and control mice. Conclusion: Deletion of hepatic FXR did not completely inhibit but delays liver regeneration after PHX secondary to delayed cyclin D1 activation. (HEPATOLOGY 2012;56:2344–2352)
- Subjects :
- Male
medicine.medical_specialty
Time Factors
MAP Kinase Signaling System
medicine.medical_treatment
Genes, myc
Gene Expression
Receptors, Cytoplasmic and Nuclear
Biology
Intra-Abdominal Fat
Retinoblastoma Protein
Article
Bile Acids and Salts
Proto-Oncogene Proteins c-myc
Mice
Cyclin D1
Genes, jun
Internal medicine
medicine
Animals
Hepatectomy
RNA, Messenger
Phosphorylation
Protein kinase B
Cell Proliferation
Mice, Knockout
Hepatology
Hepatocyte Growth Factor
Cyclin-Dependent Kinase 4
Cell Cycle Checkpoints
Liver regeneration
Liver Regeneration
medicine.anatomical_structure
Endocrinology
Nuclear receptor
Liver
Hepatocyte
Hepatocytes
Hepatocyte growth factor
Farnesoid X receptor
Proto-Oncogene Proteins c-akt
medicine.drug
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....98c6876329e8e8ac47bc6916ca5d99f2