Back to Search Start Over

Insertion forces and intracochlear trauma in temporal bone specimens implanted with a straight atraumatic electrode array

Authors :
Lenka Harbach
Silke Hügl
Saleh Mohebbi
Thomas Lenarz
Omid Majdani
Thomas S. Rau
Marjan Mirsalehi
Source :
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 274(5)
Publication Year :
2016

Abstract

The aim of the study was to evaluate insertion forces during manual insertion of a straight atraumatic electrode in human temporal bones, and post-implantation histologic evaluation of the samples to determine whether violation of intracochlear structures is related to insertion forces. In order to minimize intracochlear trauma and preserve residual hearing during cochlear implantation, knowledge of the insertion forces is necessary. Ten fresh frozen human temporal bones were prepared with canal wall down mastoidectomy. All samples were mounted on a one-axis force sensor. Insertion of a 16-mm straight atraumatic electrode was performed from different angles to induce “traumatic” insertion. Histologic evaluation was performed in order to evaluate intracochlear trauma. In 4 of 10 samples, dislocation of the electrode into scala vestibuli was observed. The mean insertion force for all 10 procedures was 0.003 ± 0.005 N. Insertion forces measured around the site of dislocation to scala vestibuli in 3 of 4 samples were significantly higher than insertion forces at the same location of the cochleae measured in samples without trauma (p

Details

ISSN :
14344726
Volume :
274
Issue :
5
Database :
OpenAIRE
Journal :
European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
Accession number :
edsair.doi.dedup.....9896a20e15ea185d75c3c0125c653dfd