Back to Search Start Over

Descriptive modelling to predict deoxynivalenol in winter wheat in the Netherlands

Authors :
H.J. van der Fels-Klerx
S.L.G.E. Burgers
C.J.H. Booij
RIKILT - Institute of Food Safety
Biometris
Plant Research International
Wageningen University and Research [Wageningen] (WUR)-Wageningen University and Research [Wageningen] (WUR)
Plant Research International (PRI)
Wageningen University and Research [Wageningen] (WUR)
Source :
Food Additives & Contaminants. Pt. A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 27(5), 636-643, Food Additives & Contaminants. Pt. A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (2010) 5, Food Additives and Contaminants, Food Additives and Contaminants, 2010, 27 (05), pp.636-643. ⟨10.1080/19440040903571762⟩
Publication Year :
2010

Abstract

International audience; Predictions of deoxynivalenol (DON) content in wheat at harvest can be useful for decision making by stakeholders of the wheat feed and food supply chain. The objective of the current research was to develop quantitative predictive models for DON in mature winter wheat in The Netherlands for two specific groups of end-users. One model was developed for use by farmers in underpinning Fusarium spp. disease management, specifically the application of fungicides around wheat flowering (model A). The second model was developed for industry and food safety authorities, and considered the entire wheat cultivation period (model B). Model development was based on observational data collected from 425 fields throughout the Netherlands in the period 2001-2008. For each field, agronomical information, climatic data and DON levels in mature wheat were collected. Using multiple regression analyses, the set of biological relevant variables that provided the highest statistical performance was selected. The two final models include the following variables: region, wheat resistance level, spraying, flowering date, several climatic variables in the different stages of wheat growing, and length of the period between flowering and harvesting (model B only). The percentage of variance accounted for was 64.4 % and 65.6 % for model A and B, respectively. Model validation showed high correlation between the predicted and observed DON levels. The two models may be applied by various groups of end-users to reduce DON contamination in wheat derived feed and food products and, ultimately, reduce animal and consumer health risks.

Details

Language :
English
ISSN :
19440049
Database :
OpenAIRE
Journal :
Food Additives & Contaminants. Pt. A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 27(5), 636-643, Food Additives & Contaminants. Pt. A, Chemistry, Analysis, Control, Exposure & Risk Assessment 27 (2010) 5, Food Additives and Contaminants, Food Additives and Contaminants, 2010, 27 (05), pp.636-643. ⟨10.1080/19440040903571762⟩
Accession number :
edsair.doi.dedup.....986deea0fc68e84e16c9f16eabe45102