Back to Search
Start Over
On the (Im)Practicality of Adversarial Perturbation for Image Privacy
- Source :
- Proceedings on Privacy Enhancing Technologies, Vol 2021, Iss 1, Pp 85-106 (2021)
- Publication Year :
- 2021
- Publisher :
- Sciendo, 2021.
-
Abstract
- Image hosting platforms are a popular way to store and share images with family members and friends. However, such platforms typically have full access to images raising privacy concerns. These concerns are further exacerbated with the advent of Convolutional Neural Networks (CNNs) that can be trained on available images to automatically detect and recognize faces with high accuracy. Recently, adversarial perturbations have been proposed as a potential defense against automated recognition and classification of images by CNNs. In this paper, we explore the practicality of adversarial perturbation-based approaches as a privacy defense against automated face recognition. Specifically, we first identify practical requirements for such approaches and then propose two practical adversarial perturbation approaches – (i) learned universal ensemble perturbations (UEP), and (ii) k-randomized transparent image overlays (k-RTIO) that are semantic adversarial perturbations. We demonstrate how users can generate effective transferable perturbations under realistic assumptions with less effort. We evaluate the proposed methods against state-of-theart online and offline face recognition models, Clarifai.com and DeepFace, respectively. Our findings show that UEP and k-RTIO respectively achieve more than 85% and 90% success against face recognition models. Additionally, we explore potential countermeasures that classifiers can use to thwart the proposed defenses. Particularly, we demonstrate one effective countermeasure against UEP.
- Subjects :
- image privacy
Ethics
021110 strategic, defence & security studies
Theoretical computer science
business.industry
Computer science
convolutional neural networks (cnns)
0211 other engineering and technologies
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
transparent image overlays
Information technology
Perturbation (astronomy)
02 engineering and technology
QA75.5-76.95
transferable perturbations
BJ1-1725
adversarial examples
Adversarial system
Electronic computers. Computer science
0202 electrical engineering, electronic engineering, information engineering
General Earth and Planetary Sciences
020201 artificial intelligence & image processing
business
General Environmental Science
Subjects
Details
- Language :
- English
- ISSN :
- 22990984
- Volume :
- 2021
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Proceedings on Privacy Enhancing Technologies
- Accession number :
- edsair.doi.dedup.....98534080e1957538aed50bf54af47782