Back to Search Start Over

Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms

Authors :
Valeria Maffeis
Lina Carvalho
Giuseppe Pelosi
Deborah Marchiori
Fiorella Calabrese
Véronique Hofman
Gabriella Nesi
Myriam Remmelink
Fausto Sessa
Irene Stacchiotti
Angela De Palma
Salma Naheed
Jasna Metovic
Linda Pattini
Giuseppe Marulli
Silvia Uccella
Christian H. Ottensmeier
Giada Sandrini
Federico Rea
Gabriella Serio
Izidor Kern
Roberta Maragliano
Paul Hofman
Massimo Barberis
Eugenio Maiorano
Matteo Bulloni
Antonio Pennella
Ambrogio Fassina
Gabriella Fontanini
Federica Pezzuto
Mauro Papotti
Francesco Fortarezza
Eleonora Pisa
Senia Trabucco
Andrea Marzullo
Greta Alì
Source :
Cancers, Vol 13, Iss 4875, p 4875 (2021), Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP, Cancers, Volume 13, Issue 19, Cancers, vol. 13, no. 19, pp. 1-19, 2021., Cancers (Basel), 13 (19, CANCERS
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs.<br />SCOPUS: ar.j<br />info:eu-repo/semantics/published

Details

Language :
English
ISSN :
20726694
Volume :
13
Issue :
4875
Database :
OpenAIRE
Journal :
Cancers
Accession number :
edsair.doi.dedup.....98359bf55accb40bcdbb21543602d7c1