Back to Search Start Over

Enhancement of instrumented ultrasonic tracking images using deep learning

Authors :
Efthymios Maneas
Andreas Hauptmann
Erwin J. Alles
Wenfeng Xia
Sacha Noimark
Anna L. David
Simon Arridge
Adrien E. Desjardins
Source :
International Journal of Computer Assisted Radiology and Surgery. 18:395-399
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Purpose: Instrumented ultrasonic tracking provides needle localisation during ultrasound-guided minimally invasive percutaneous procedures. Here, a post-processing framework based on a convolutional neural network (CNN) is proposed to improve the spatial resolution of ultrasonic tracking images. Methods: The custom ultrasonic tracking system comprised a needle with an integrated fibre-optic ultrasound (US) transmitter and a clinical US probe for receiving those transmissions and for acquiring B-mode US images. For post-processing of tracking images reconstructed from the received fibre-optic US transmissions, a recently-developed framework based on ResNet architecture, trained with a purely synthetic dataset, was employed. A preliminary evaluation of this framework was performed with data acquired from needle insertions in the heart of a fetal sheep in vivo. The axial and lateral spatial resolution of the tracking images were used as performance metrics of the trained network. Results: Application of the CNN yielded improvements in the spatial resolution of the tracking images. In three needle insertions, in which the tip depth ranged from 23.9 to 38.4 mm, the lateral resolution improved from 2.11 to 1.58 mm, and the axial resolution improved from 1.29 to 0.46 mm. Conclusion: The results provide strong indications of the potential of CNNs to improve the spatial resolution of ultrasonic tracking images and thereby to increase the accuracy of needle tip localisation. These improvements could have broad applicability and impact across multiple clinical fields, which could lead to improvements in procedural efficiency and reductions in risk of complications.

Details

ISSN :
18616429
Volume :
18
Database :
OpenAIRE
Journal :
International Journal of Computer Assisted Radiology and Surgery
Accession number :
edsair.doi.dedup.....981bb812c1549a6754a3caf6d0fc7ac5
Full Text :
https://doi.org/10.1007/s11548-022-02728-7