Back to Search Start Over

Intrinsic coupling modes reveal the functional architecture of cortico-tectal networks

Authors :
Edgar Galindo-Leon
Florian Pieper
Iain Stitt
Andreas K. Engel
Gerhard Engler
Thomas Stieglitz
Eva Fiedler
Source :
Science Advances
Publication Year :
2015
Publisher :
American Association for the Advancement of Science, 2015.

Abstract

Correlation of ongoing neural dynamics reveals the various carrier frequencies of cortico-tectal functional interaction.<br />In the absence of sensory stimulation or motor output, the brain exhibits complex spatiotemporal patterns of intrinsically generated neural activity. Analysis of ongoing brain dynamics has identified the prevailing modes of cortico-cortical interaction; however, little is known about how such patterns of intrinsically generated activity are correlated between cortical and subcortical brain areas. We investigate the correlation structure of ongoing cortical and superior colliculus (SC) activity across multiple spatial and temporal scales. Ongoing cortico-tectal interaction was characterized by correlated fluctuations in the amplitude of delta, spindle, low gamma, and high-frequency oscillations (>100 Hz). Of these identified coupling modes, topographical patterns of high-frequency coupling were the most consistent with patterns of anatomical connectivity, reflecting synchronized spiking within cortico-tectal networks. Cortico-tectal coupling at high frequencies was temporally parcellated by the phase of slow cortical oscillations and was strongest for SC-cortex channel pairs that displayed overlapping visual spatial receptive fields. Despite displaying a high degree of spatial specificity, cortico-tectal coupling in lower-frequency bands did not match patterns of cortex-to-SC anatomical connectivity. Collectively, our findings demonstrate that neural activity is spontaneously coupled between cortex and SC, with high- and low-frequency modes of coupling reflecting direct and indirect cortico-tectal interactions, respectively.

Details

Language :
English
ISSN :
23752548
Volume :
1
Issue :
7
Database :
OpenAIRE
Journal :
Science Advances
Accession number :
edsair.doi.dedup.....981721ca17223250763ca0abb3c8953b