Back to Search Start Over

Tearing graphene sheets from adhesive substrates produces tapered nanoribbons

Authors :
Pedro M. Reis
Kostya S. Novoselov
Markus J. Buehler
Dipanjan Sen
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Massachusetts Institute of Technology. Department of Mathematics
Sen, Dipanjan
Reis, Pedro Miguel
Buehler, Markus J.
Source :
Small, arXiv
Publication Year :
2010

Abstract

Graphene is a truly two-dimensional atomic crystal with exceptional electronic and mechanical properties. Whereas conventional bulk and thin-film materials have been studied extensively, the key mechanical properties of graphene, such as tearing and cracking, remain unknown, partly due to its two-dimensional nature and ultimate single-atom-layer thickness, which result in the breakdown of conventional material models. By combining first-principles ReaxFF molecular dynamics and experimental studies, a bottom-up investigation of the tearing of graphene sheets from adhesive substrates is reported, including the discovery of the formation of tapered graphene nanoribbons. Through a careful analysis of the underlying molecular rupture mechanisms, it is shown that the resulting nanoribbon geometry is controlled by both the graphene–substrate adhesion energy and by the number of torn graphene layers. By considering graphene as a model material for a broader class of two-dimensional atomic crystals, these results provide fundamental insights into the tearing and cracking mechanisms of highly confined nanomaterials.<br />United States. Defense Advanced Research Projects Agency (Grant HR0011-08-1-0067)<br />United States. Army Research Office. (Grant W911NF-06-1-0291)

Details

Language :
English
ISSN :
16136810
Database :
OpenAIRE
Journal :
Small
Accession number :
edsair.doi.dedup.....980a8e41f4b33cb22a2f96ef63907224
Full Text :
https://doi.org/10.1002/smll.201000097