Back to Search Start Over

The angiogenic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for FGF2

Authors :
David F. Holmes
Giovanni Salvatori
Thomas A. Jowitt
David Briggs
Anthony J. Day
Marcella Marcellini
Antonio Inforzato
Vincenzo Rivieccio
Ragnar Lindstedt
Barbara Bottazzi
Karl E. Kadler
Clair Baldock
Antonio Verdoliva
Alberto Mantovani
Source :
The Journal of biological chemistry. 285(23)
Publication Year :
2010

Abstract

The inflammation-associated long pentraxin PTX3 plays key roles in innate immunity, female fertility, and vascular biology (e.g. it inhibits FGF2 (fibroblast growth factor 2)-mediated angiogenesis). PTX3 is composed of multiple protomers, each composed of distinct N- and C-terminal domains; however, it is not known how these are organized or contribute to its functional properties. Here, biophysical analyses reveal that PTX3 is composed of eight identical protomers, associated through disulfide bonds, forming an elongated and asymmetric, molecule with two differently sized domains interconnected by a stalk. The N-terminal region of the protomer provides the main structural determinant underlying this quaternary organization, supporting formation of a disulfide-linked tetramer and a dimer of dimers (a non-covalent tetramer), giving rise to the asymmetry of the molecule. Furthermore, the PTX3 octamer is shown to contain two FGF2 binding sites, where it is the tetramers that act as the functional units in ligand recognition. Thus, these studies provide a unifying model of the PTX3 oligomer, explaining both its quaternary organization and how this is required for its antiangiogenic function.

Details

ISSN :
1083351X
Volume :
285
Issue :
23
Database :
OpenAIRE
Journal :
The Journal of biological chemistry
Accession number :
edsair.doi.dedup.....9809ce16df8fe915070c22a0d870cceb