Back to Search
Start Over
GMMPLS: A Novel Automatic State-Based Algorithm for Continuous Decoding in BMIs
- Source :
- IEEE Access, Vol 9, Pp 148756-148770 (2021)
- Publication Year :
- 2021
- Publisher :
- IEEE, 2021.
-
Abstract
- In this paper, a novel fully-automated state-based decoding method has been proposed for continuous decoding problems in brain-machine interface (BMI) systems, called Gaussian mixture of model (GMM)-assisted PLS (GMMPLS). In contrast to other state-based and hierarchical decoders, the proposed method does not demand any prior information about the desired output structure. Instead, GMMPLS uses the GMM algorithm to divide the desired output into a specific number of states (clusters). Next, a logistic regression model is trained to predict the probability membership of each time sample for each state. Finally, using the concept of the partial least square (PLS) algorithm, GMMPLS constructs a model for decoding the desired output using the input data and the achieved membership probabilities. The performance of the GMMPLS has been evaluated and compared to PLS, the nonlinear quadratic PLS (QPLS), and the bayesian PLS (BPLS) methods through a simulated dataset and two different real-world BMI datasets. The achieved results demonstrated that the GMMPLS significantly outperformed PLS, QPLS, and BPLS overall datasets.
- Subjects :
- General Computer Science
Computer science
state-based decoding
Gaussian
Bayesian probability
Feature extraction
General Engineering
Data modeling
TK1-9971
symbols.namesake
Statistical classification
Quadratic equation
partial least square (PLS)
Brain–machine interfaces (BMIs)
continuous decoding
symbols
General Materials Science
Electrical engineering. Electronics. Nuclear engineering
Cluster analysis
Algorithm
Decoding methods
Gaussian mixture of model (GMM)
Subjects
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- IEEE Access
- Accession number :
- edsair.doi.dedup.....97fc936c2911512be914b6231bb07de1