Back to Search Start Over

Injectable pre-cultured tissue modules catalyze the formation of extensive functional microvasculature in vivo

Authors :
Xiaowei Hong
Andrew J. Putnam
Nicole E. Friend
Ana Y. Rioja
Jan P. Stegemann
Cheri X. Deng
Yen Peng Kong
Julia C. Habif
Jeffrey A. Beamish
Jonathan R. Bezenah
Source :
Scientific Reports, Vol 10, Iss 1, Pp 1-16 (2020), Scientific Reports
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

Revascularization of ischemic tissues is a major barrier to restoring tissue function in many pathologies. Delivery of pro-angiogenic factors has shown some benefit, but it is difficult to recapitulate the complex set of factors required to form stable vasculature. Cell-based therapies and pre-vascularized tissues have shown promise, but the former require time for vascular assembly in situ while the latter require invasive surgery to implant vascularized scaffolds. Here, we developed cell-laden fibrin microbeads that can be pre-cultured to form primitive vascular networks within the modular structures. These microbeads can be delivered in a minimally invasive manner and form functional microvasculature in vivo. Microbeads containing endothelial cells and stromal fibroblasts were pre-cultured for 3 days in vitro and then injected within a fibrin matrix into subcutaneous pockets on the dorsal flanks of SCID mice. Vessels deployed from these pre-cultured microbeads formed functional connections to host vasculature within 3 days and exhibited extensive, mature vessel coverage after 7 days in vivo. Cellular microbeads showed vascularization potential comparable to bulk cellular hydrogels in this pilot study. Furthermore, our findings highlight some potentially advantageous characteristics of pre-cultured microbeads, such as volume preservation and vascular network distribution, which may be beneficial for treating ischemic diseases.

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....97e6e20a1b71be61603da113dfb0555b