Back to Search
Start Over
TLR2 signaling pathway combats Streptococcus uberis infection by inducing production of mitochondrial reactive oxygen species
- Publication Year :
- 2019
- Publisher :
- Cold Spring Harbor Laboratory, 2019.
-
Abstract
- Mastitis caused by Streptococcus uberis is a hazardous clinical disease in dairy animals. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2−/− and TLR4−/− mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage and bacterial count in mammary glands. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. uberis infection. In MECs, TLR2 detected S. uberis infection and induced mitochondrial reactive oxygen species (mROS) to assist host control of secretion of inflammatory factors and elimination of intracellular S. uberis. Our results demonstrate that TLR2-mediated mROS have a significant effect on S. uberis-induced host defense responses in mammary glands as well as MECs.Author summaryS. uberis contributes significantly to global mastitis and remains a major obstacle for inflammation elimination due to its ability to form persistent infection in mammary tissue. The Toll-like receptor (TLR) family plays a significant role in identifying infections of intracellular bacteria and further triggering inflammatory reactions in immune cells. However, the detailed molecular mechanism by which TLR is regulated, and whether MECs, as the main cells in mammary gland, are tightly involved in these processes is poorly understood. Here, we used S. uberis to infect mammary glands of wild type, TLR2−/−, TLR4−/− mice and MECs to assess pathogenesis, proinflammatory cytokines, ROS as well as mROS levels during infection. We found that during S.uberis infection, it is TLR2 deficiency that induced more severe pathological changes through MyD88-mediated signaling pathways. In addition, our work demonstrates that mROS mediated by TLR2 has an important role in host defense response to combat S. uberis infection in mammary glands as well as MECs.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....97e44485899bd33167dfbe50eadb8a69
- Full Text :
- https://doi.org/10.1101/809186