Back to Search Start Over

Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: a case study

Authors :
Abida Farooqi
Mazhar Iqbal Zafar
Noshin Masood
Source :
Environmental Monitoring and Assessment. 191
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Present study aimed to provide a baseline data on arsenic (As) and other potentially toxic element (PTEs; Cd, Cr, Cu, Ni, and Pb) contamination in groundwater and soils (surface and sub-surface) from an industrial area of district Gujrat, Pakistan. Statistical parameters, principal component analysis-multiple linear regression (PCA-MLR), and health risk assessment model were used to elaborate the interrelations, source contributor, and associated health risks. This study revealed that the concentrations of Cd, Cr, Cu, and Pb in drinking water were within the permissible limits of the World Health Organization (WHO). However, As and Ni concentrations exceeded the WHO limits of 10 μg/L for As and 0.07 mg/L for Ni. In soils, the concentration of Cr was within permissible limits, whereas As, Cd, Cu, Ni, and Pb exceeded the prescribed values. Solid waste and industrial effluents from the area also contained high levels of As, Cd, Cr, Cu, Ni, and Pb. Calculated health index of As and other PTEs for industrial site and control area was less than 1 which indicated that the groundwater was assumed to be safe for drinking. High contamination of As (15 mg/kg) and other PTEs (Pb was 978, Cr 51, Cu 111, Cd 68, and Ni was 90 mg/kg, respectively) in upper soil could be due to the discharge of industrial effluent prior to the treatment, which signifies the industrial contribution towards As and heavy metal contamination. It can be concluded that critical examination of soil profile affinity to the respective, industrial waste pollutants can reduce the health risks to the local community. This trend not only reveals the geochemistry of the area but also useful for developing a link to access health risk and associated remediation processes.

Details

ISSN :
15732959 and 01676369
Volume :
191
Database :
OpenAIRE
Journal :
Environmental Monitoring and Assessment
Accession number :
edsair.doi.dedup.....97bb9491434fe0f31b8da0f8b44add64