Back to Search Start Over

Controls on the Formation of Lunar Multiring Basins

Authors :
Jeffrey C. Andrews-Hanna
H. J. Melosh
Andrew M. Freed
Maria T. Zuber
Gareth S. Collins
Brandon C. Johnson
Science and Technology Facilities Council (STFC)
Source :
Journal of Geophysical Research: Planets. 123:3035-3050
Publication Year :
2018
Publisher :
American Geophysical Union (AGU), 2018.

Abstract

Multiring basins dominate the crustal structure, tectonics, and stratigraphy of the Moon. Understanding how these basins form is crucial for understanding the evolution of ancient planetary crusts. To understand how preimpact thermal structure and crustal thickness affect the formation of multiring basins, we simulate the formation of lunar basins and their rings under a range of target and impactor conditions. We find that ring locations, spacing, and offsets are sensitive to lunar thermal gradient (strength of the lithosphere), temperature of the deep lunar mantle (strength of the asthenosphere), and preimpact crustal thickness. We also explore the effect of impactor size on the formation of basin rings and reproduce the observed transition from peak‐ring basins to multiring basins and reproduced many observed aspects of ring spacing and location. Our results are in broad agreement with the ring tectonic theory for the formation of basin rings and also suggest that ring tectonic theory applies to the rim scarp of smaller peak‐ring basins.

Details

ISSN :
21699100 and 21699097
Volume :
123
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Planets
Accession number :
edsair.doi.dedup.....978202a16fa5f928bd1c3500a808bb71
Full Text :
https://doi.org/10.1029/2018je005765