Back to Search
Start Over
Homological properties of parafree Lie algebras
- Source :
- Journal of Algebra. 560:1092-1106
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- In this paper, an explicit construction of a countable parafree Lie algebra over $\mathbb Z/2$ with nonzero second homology is given. It is also shown that the cohomological dimension of the pronilpotent completion of a free noncyclic finitely generated Lie algebra over $\mathbb Z$ is greater than two. Moreover, it is proven that there exists a countable parafree group with nontrivial $H_2$.
- Subjects :
- Pure mathematics
Algebra and Number Theory
010102 general mathematics
Parafree group
Group Theory (math.GR)
Mathematics - Rings and Algebras
Homology (mathematics)
Cohomological dimension
01 natural sciences
Mathematics::Group Theory
Rings and Algebras (math.RA)
0103 physical sciences
Lie algebra
FOS: Mathematics
Countable set
010307 mathematical physics
Finitely-generated abelian group
0101 mathematics
Mathematics - Group Theory
Mathematics
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 560
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....977ed384878247d5fd8b9f8aabf959dc
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2020.05.031