Back to Search
Start Over
BMS‐202, a PD‐1/PD‐L1 inhibitor, decelerates the pro‑fibrotic effects of fibroblasts derived from scar tissues via ERK and TGFβ1/Smad signaling pathways
- Source :
- Immunity, Inflammation and Disease. 10
- Publication Year :
- 2022
- Publisher :
- Wiley, 2022.
-
Abstract
- Hypertrophic scar (HS), a fibroproliferative disorder of the skin with some tumor-like properties, is closely related to dysregulated inflammation. PD-1/PD-L1 inhibitor is a promising medication for cancer therapy as its potent functions on adaptive immune response; whether it could be a candidate for HS therapy has aroused our interest. This study aimed to explore the effect and the mechanism of BMS-202, a PD-1/PD-L1 inhibitor, in HS.Ten HS and adjacent normal skin tissues collected from HS patients were used to detect α-SMA, collagen I, and PD-L1 expression by Quantitative reverse transcription-polymerase chain reaction and western blot (WB) analysis. Fibroblasts derived from HS tissues (HFBs) were exposed to diverse concentrations of BMS-202, of which proliferation, migration, apoptosis, and collagen synthesis were evaluated by Cell Counting Kit-8, wound healing, terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End labeling, and [sup3/supH]-proline incorporation assays, respectively. The effect of BMS-202 on α-SMA and collagen I expression, and transforming growth factor beta 1 (TGFβ1)/Smad signaling in HFBs was also determined by WB and enzyme-linked immunosorbent assay.The expression level of PD-L1 was significantly elevated in both HS tissues and HFBs, which was positively correlated with α-SMA and collagen I expressions. BMS-202 exerted a significant suppression effect on the cell proliferation, migration, collagen synthesis, and α-SMA and collagen I expression of HFBs in a concentration-dependent way; but did not affect apoptosis. Finally, BMS-202 could reduce the phosphorylation of ERK1/2, Smad2, and Smad3, and the TGFβ1 expression once its concentration reached 2.5 nM.BMS-202 effectively suppressed proliferation, migration, and extracellular matrix deposition of HFBs, potentially through the regulation of the ERK and TGFβ1/Smad signaling pathways.
Details
- ISSN :
- 20504527
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- Immunity, Inflammation and Disease
- Accession number :
- edsair.doi.dedup.....9770f1ea4859fec12e4338b5d17c9602