Back to Search
Start Over
Postnatal irradiation-induced hippocampal neuropathology, cognitive impairment and aging
- Source :
- Brain and Development. 39:277-293
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- Irradiation of the brain in early human life may set abnormal developmental events into motion that last a lifetime, leading to a poor quality of life for affected individuals. While the effect of irradiation at different early developmental stages on the late human life has not been investigated systematically, animal experimental studies suggest that acute postnatal irradiation with ⩾0.1Gy may significantly reduce neurogenesis in the dentate gyrus and endotheliogenesis in cerebral vessels and induce cognitive impairment and aging. Fractionated irradiation also reduces neurogenesis. Furthermore, irradiation induces hippocampal neuronal loss in CA1 and CA3 areas, neuroinflammation and reduces gliogenesis. The hippocampal neurovascular niche and the total number of microvessels are also changed after radiation exposures. Each or combination of these pathological changes may cause cognitive impairment and aging. Interestingly, acute irradiation of aged brain with a certain amount of radiation has also been reported to induce brain hormesis or neurogenesis. At molecular levels, inflammatory cytokines, chemokines, neural growth factors, neurotransmitters, their receptors and signal transduction systems, reactive oxygen species are involved in radiation-induced adverse effect on brain development and functions. Further study at different omics levels after low dose/dose rate irradiation may not only unravel the mechanisms of radiation-induced adverse brain effect or hormesis, but also provide clues for detection or diagnosis of radiation exposure and for therapeutic approaches to effectively prevent radiation-induced cognitive impairment and aging. Investigation focusing on radiation-induced changes of critical brain development events may reveal many previously unknown adverse effects.
- Subjects :
- Aging
Neurogenesis
Dentate gyrus
Hormesis
General Medicine
Neuropathology
Hippocampal formation
Hippocampus
Proinflammatory cytokine
03 medical and health sciences
0302 clinical medicine
Developmental Neuroscience
030220 oncology & carcinogenesis
Pediatrics, Perinatology and Child Health
Animals
Humans
Cognitive Dysfunction
Neurology (clinical)
Radiation Injuries
Psychology
Neuroscience
030217 neurology & neurosurgery
Neuroinflammation
Gliogenesis
Subjects
Details
- ISSN :
- 03877604
- Volume :
- 39
- Database :
- OpenAIRE
- Journal :
- Brain and Development
- Accession number :
- edsair.doi.dedup.....976fb45796c16d7a8756a944e28d5f54