Back to Search
Start Over
Numerical investigation on lithium transport in the edge plasma of EAST real-time- Li-injection experiments in the frame of BOUT++
- Source :
- Nuclear Materials and Energy, Vol 12, Iss, Pp 119-123 (2017)
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- To study the transport of Li species in the plasma with real-time Li aerosol injection on EAST, a model has been developed by reducing Braginskii's equations, and implemented in the frame of BOUT++. The simulation results show that Li atoms propagate inwards since the Li injection, and their penetration depth depends on both the local plasma conditions along their path and initial injection velocity. It is also found that Li ions accumulate rapidly in the edge, and only a small fraction of Li species can transport cross the separatrix into the core. In the poloidal direction, Li ions drift swiftly downwards along the field lines, and transport much faster at the high field side than at the low field side. The interaction between background plasma and Li species plays a critical role in determining the edge plasma profile. It is found that real-time Li injection raises the plasma density in the pedestal region and reduces the plasma temperature, just as has been observed experimentally. Keywords: BOUT++, Lithium injection, Edge plasma
- Subjects :
- Nuclear and High Energy Physics
Field (physics)
Field line
Chemistry
Materials Science (miscellaneous)
Plasma
Edge (geometry)
lcsh:TK9001-9401
01 natural sciences
010305 fluids & plasmas
Ion
Core (optical fiber)
Pedestal
Nuclear Energy and Engineering
Physics::Plasma Physics
Physics::Space Physics
0103 physical sciences
lcsh:Nuclear engineering. Atomic power
Atomic physics
010306 general physics
Penetration depth
Subjects
Details
- ISSN :
- 23521791
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- Nuclear Materials and Energy
- Accession number :
- edsair.doi.dedup.....96f87f02100261b289f93f10acb77130
- Full Text :
- https://doi.org/10.1016/j.nme.2016.12.009