Back to Search
Start Over
Cross-sectional analysis of glucose metabolism in Friedreich Ataxia
- Source :
- Journal of the Neurological Sciences. 342:29-35
- Publication Year :
- 2014
- Publisher :
- Elsevier BV, 2014.
-
Abstract
- Objectives To evaluate the relationship between disease features in Friedreich ataxia and aberrant glucose metabolism. Methods Fasting glucose, fasting insulin and random HbA1C were obtained in 158 patients with Friedreich ataxia. Regression analysis evaluated glucose, insulin, and homeostatic model assessment (HOMA) of insulin resistance (IR) and beta-cell function (s) in relation to age, BMI, sex, and genetic severity. Categorical glucose values were analyzed in relation to other FRDA-associated disease characteristics. Results In the FRDA cohort, age and GAA repeat length predicted fasting glucose and HbA1c levels (accounting for sex and BMI), while insulin and HOMA-IR were not predicted by these parameters. Within the cohort, average BMI was consistently lower than the national average by age and was marginally associated with insulin levels and HOMA-IR. Within juvenile subjects, insulin and HOMA-IR were predicted by age. Controlling for age and genetic severity, diabetes-related measures were not independent predictors of any quantitative measure of disease severity in FRDA. Glucose handling properties were also predicted by the presence of a point mutation, with 40% of individuals heterozygous for point mutations having diabetes, compared to 4.3% of subjects who carried two expanded GAA repeats. Interpretation In FRDA, aberrant glucose metabolism is linked to increasing age, longer GAA repeat length on the shorter allele, frataxin point mutations, and increasing BMI. The effect of age to some degree may be mediated through changes in BMI, with increasing age associated with increases in BMI, and with HOMA-IR and insulin increases in children.
- Subjects :
- Adult
Blood Glucose
Male
medicine.medical_specialty
Ataxia
Adolescent
medicine.medical_treatment
Carbohydrate metabolism
Models, Biological
Body Mass Index
Young Adult
Sex Factors
Insulin resistance
Iron-Binding Proteins
Diabetes mellitus
Internal medicine
Diabetes Mellitus
medicine
Homeostasis
Humans
Insulin
Point Mutation
Child
Aged
Glycated Hemoglobin
Genetics
biology
Age Factors
nutritional and metabolic diseases
Fasting
Middle Aged
medicine.disease
Cross-Sectional Studies
Endocrinology
Neurology
Friedreich Ataxia
Child, Preschool
Homeostatic model assessment
Frataxin
biology.protein
Female
Neurology (clinical)
medicine.symptom
Trinucleotide Repeat Expansion
Body mass index
Subjects
Details
- ISSN :
- 0022510X
- Volume :
- 342
- Database :
- OpenAIRE
- Journal :
- Journal of the Neurological Sciences
- Accession number :
- edsair.doi.dedup.....96be623e1b2afdadf7199bef400145a7
- Full Text :
- https://doi.org/10.1016/j.jns.2014.04.015