Back to Search
Start Over
Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis
- Source :
- Journal of Theoretical Biology, Journal of Theoretical Biology, Elsevier, 2011, 270 (1), pp.31. ⟨10.1016/j.jtbi.2010.11.021⟩, Pokhilko, A, Ramos, J A, Holtan, H, Maszle, D R, Khanna, R & Millar, A J 2011, ' Ubiquitin ligase switch in plant photomorphogenesis : A hypothesis ', Journal of Theoretical Biology, vol. 270, no. 1, pp. 31-41 . https://doi.org/10.1016/j.jtbi.2010.11.021
- Publication Year :
- 2011
- Publisher :
- Elsevier BV, 2011.
-
Abstract
- The E3 ubiquitin ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1) plays a key role in the repression of the plant photomorphogenic development in darkness. In the presence of light, COP1 is inactivated by a mechanism which is not completely understood. This leads to accumulation of COP1’s target transcription factors, which initiates photomorphogenesis, resulting in dramatic changes of the seedling’s physiology.Here we use a mathematical model to explore the possible mechanism of COP1 modulation upon dark/light transition in Arabidopsis thaliana based upon data for two COP1 target proteins: HY5 and HFR1, which play critical roles in photomorphogenesis. The main reactions in our model are the inactivation of COP1 by a proposed photoreceptor-related inhibitor I and interactions between COP1 and a CUL4 (CULLIN4)-based ligase. For building and verification of the model, we used the available published and our new data on the kinetics of HY5 and HFR1 together with the data on COP1 abundance. HY5 has been shown to accumulate at a slower rate than HFR1. To describe the observed differences in the timecourses of the “slow” target HY5 and the “fast” target HFR1, we hypothesize a switch between the activities of COP1 and CUL4 ligases upon dark/light transition, with COP1 being active mostly in darkness and CUL4 in light. The model predicts a bi-phasic kinetics of COP1 activity upon the exposure of plants to light, with its restoration after the initial decline and the following slow depletion of the total COP1 content. CUL4 activity is predicted to increase in the presence of light. We propose that the ubiquitin ligase switch is important for the complex regulation of multiple transcription factors during plants development. In addition, this provides a new mechanism for sensing the duration of light period, which is important for seasonal changes in plant development.
- Subjects :
- 0106 biological sciences
Arabidopsis thaliana
Arabidopsis
01 natural sciences
Mathematical model
Gene Expression Regulation, Plant
HFR1
Morphogenesis
Medicine(all)
chemistry.chemical_classification
0303 health sciences
Agricultural and Biological Sciences(all)
Applied Mathematics
Nuclear Proteins
General Medicine
Cullin Proteins
Up-Regulation
Cell biology
Ubiquitin ligase
DNA-Binding Proteins
Basic-Leucine Zipper Transcription Factors
Modeling and Simulation
Photomorphogenesis
Systems biology
General Agricultural and Biological Sciences
Algorithms
HY5
Statistics and Probability
Photoperiod
Ubiquitin-Protein Ligases
Down-Regulation
Biology
Models, Biological
Article
General Biochemistry, Genetics and Molecular Biology
03 medical and health sciences
Phytochrome A
Modelling and Simulation
Immunology and Microbiology(all)
Computer Simulation
COP9 signalosome
Transcription factor
030304 developmental biology
DNA ligase
General Immunology and Microbiology
Arabidopsis Proteins
Biochemistry, Genetics and Molecular Biology(all)
fungi
biology.organism_classification
Molecular biology
Kinetics
chemistry
HY5/ HFR1
biology.protein
010606 plant biology & botany
Subjects
Details
- ISSN :
- 00225193 and 10958541
- Volume :
- 270
- Database :
- OpenAIRE
- Journal :
- Journal of Theoretical Biology
- Accession number :
- edsair.doi.dedup.....96a8a08a8c5fd60f9deba9e3306c472a
- Full Text :
- https://doi.org/10.1016/j.jtbi.2010.11.021