Back to Search Start Over

Down-regulation of mitochondrial thymidine kinase 2 and deoxyguanosine kinase by didanosine: Implication for mitochondrial toxicities of anti-HIV nucleoside analogs

Authors :
Ren Sun
Staffan Eriksson
Liya Wang
Source :
Biochemical and Biophysical Research Communications. 450:1021-1026
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial rate limiting phosphorylation of deoxynucleosides and are essential enzymes for mitochondrial function. Chemotherapy using nucleoside analogs is often associated with mitochondrial toxicities. Here we showed that incubation of U2OS cells with didanosine (ddI, 2′,3′-dideoxyinosine), a purine nucleoside analog used in the highly active antiretroviral therapy (HAART), led to selective degradation of both mitochondrial TK2 and dGK while the cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) were not affected. Addition of guanosine to the ddI-treated cells prevented the degradation of mitochondrial TK2 and dGK. The levels of intracellular reactive oxygen species and protein oxidation in ddI-treated and control cells were also measured. The results suggest that down-regulation of mitochondrial TK2 and dGK may be a mechanism of mitochondrial toxicity caused by antiviral and anticancer nucleoside analogs.

Details

ISSN :
0006291X
Volume :
450
Database :
OpenAIRE
Journal :
Biochemical and Biophysical Research Communications
Accession number :
edsair.doi.dedup.....967300760176c272021458043fcafbdc
Full Text :
https://doi.org/10.1016/j.bbrc.2014.06.098