Back to Search Start Over

Joint coarse-and-fine reasoning for deep optical flow

Authors :
Alberto Sanfeliu
Antonio M. López
Francesc Moreno-Noguer
German Ros
Victor Vaquero
Ministerio de Economía y Competitividad (España)
European Commission
Comisión Interministerial de Ciencia y Tecnología, CICYT (España)
Institut de Robòtica i Informàtica Industrial
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents
Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel.ligents
Source :
2017 IEEE International Conference on Image Processing (ICIP), Digital.CSIC. Repositorio Institucional del CSIC, instname, Recercat. Dipósit de la Recerca de Catalunya, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), ICIP
Publication Year :
2017

Abstract

Trabajo presentado a la IEEE International Conference on Image Processing (ICIP), celebrada en Beijing (China) del 17 al 20 de septiembre de 2017.<br />We propose a novel representation for dense pixel-wise estimation tasks using CNNs that boosts accuracy and reduces training time, by explicitly exploiting joint coarse-and-fine reasoning. The coarse reasoning is performed over a discrete classification space to obtain a general rough solution, while the fine details of the solution are obtained over a continuous regression space. In our approach both components are jointly estimated, which proved to be beneficial for improving estimation accuracy. Additionally, we propose a new network architecture, which combines coarse and fine components by treating the fine estimation as a refinement built on top of the coarse solution, and therefore adding details to the general prediction. We apply our approach to the challenging problem of optical flow estimation and empirically validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets.<br />This work was partially supported by European AEROARMS project (H2020-ICT-2014-1-644271) and CICYT projects ColRobTransp (DPI2016-78957-R), ROBINSTRUCT (TIN2014-58178-R).

Details

ISBN :
978-1-5090-2175-8
ISBNs :
9781509021758
Database :
OpenAIRE
Journal :
2017 IEEE International Conference on Image Processing (ICIP)
Accession number :
edsair.doi.dedup.....963646bd9511c03945185876f66793da
Full Text :
https://doi.org/10.1109/ICIP.2017.8296744