Back to Search Start Over

MicroRNA-590-5p regulates cell viability, apoptosis, migration and invasion of renal cell carcinoma cell lines through targeting ARHGAP24

Authors :
Gong-cheng Wang
Zi-yu Wu
Lei Wang
Wan-qing Wei
Source :
Molecular bioSystems. 13(12)
Publication Year :
2017

Abstract

Renal cell carcinoma (RCC) is the leading cause of death in renal malignancies. MicroRNA-590-5p (miR-590-5p) is of great importance in the processes of many cancers regarding regulation of cancer cell invasion and proliferation. In our study, alternation of miR-590-5p expression in RCC cell lines through transfection with pre-miR-590-5p (up-regulation) or anti-miR-590-5p (down-regulation) was performed. Apoptosis and viability of RCC cell lines were measured by flow cytometry and CCK-8 analysis, respectively. Cell invasion and migration were estimated by Transwell assay. The association of miR-590-5p with ARHGAP24 expression was evaluated using luciferase assays, real-time PCR and western blot assay. The expressions of apoptosis and migration-related protein were also measured by western blotting. We found that pre-miR-590-5p transfection in Caki-2 and 786-O cells showed significant increases in cell viability, invasion and migration, which were accompanied by decreased cell apoptosis, while anti-miR-590-5p transfection obviously inhibited the cell viability, migration and invasion of Caki-2 and 786-O cells as well as induced apoptosis, compared with the negative control group. Furthermore, bioinformatics combined with luciferase reporter assays indicated that ARHGAP24 is directly targeted by miR-590-5p. ARHGAP24 overexpression in 786-O and Caki-2 cells phenocopied the effects of anti-miR-590-5p transfection along with enhanced expression of active Caspase-3 and Bax/Bcl-2 ratio as well as decreased expression of MMP-2 and MMP-9. These findings suggested that miR-590-5p/ARHGAP24 seems to function as a potentially beneficial target for RCC treatment.

Details

ISSN :
17422051
Volume :
13
Issue :
12
Database :
OpenAIRE
Journal :
Molecular bioSystems
Accession number :
edsair.doi.dedup.....9617e556f8d7c5d0903e33ae121ae438