Back to Search Start Over

A shape-anisotropic reflective polarizer in a stomatopod crustacean

Authors :
Tsyr Huei Chiou
Thomas M. Jordan
Kathryn D. Feller
Nicholas W. Roberts
Thomas W. Cronin
Roy L. Caldwell
David Wilby
Source :
Jordan, TM; Wilby, D; Chiou, TH; Feller, KD; Caldwell, RL; Cronin, TW; et al.(2016). A shape-anisotropic reflective polarizer in a stomatopod crustacean. Scientific Reports, 6, 21744. doi: 10.1038/srep21744. UC Berkeley: Retrieved from: http://www.escholarship.org/uc/item/3fh6w4qz, Scientific reports, vol 6, iss 1, Scientific Reports, Jordan, T M, Wilby, D, Chiou, T-H, Feller, K D, Caldwell, R, Cronin, TW & Roberts, N W 2016, ' A shape-anisotropic reflective polarizer in a stomatopod crustacean ', Scientific Reports, vol. 6, 21744 . https://doi.org/10.1038/srep21744
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Many biophotonic structures have their spectral properties of reflection ‘tuned’ using the (zeroth-order) Bragg criteria for phase constructive interference. This is associated with a periodicity, or distribution of periodicities, parallel to the direction of illumination. The polarization properties of these reflections are, however, typically constrained by the dimensional symmetry and intrinsic dielectric properties of the biological materials. Here we report a linearly polarizing reflector in a stomatopod crustacean that consists of 6–8 layers of hollow, ovoid vesicles with principal axes of ~550 nm, ~250 nm and ~150 nm. The reflection of unpolarized normally incident light is blue/green in colour with maximum reflectance wavelength of 520 nm and a degree of polarization greater than 0.6 over most of the visible spectrum. We demonstrate that the polarizing reflection can be explained by a resonant coupling with the first-order, in-plane, Bragg harmonics. These harmonics are associated with a distribution of periodicities perpendicular to the direction of illumination, and, due to the shape-anisotropy of the vesicles, are different for each linear polarization mode. This control and tuning of the polarization of the reflection using shape-anisotropic hollow scatterers is unlike any optical structure previously described and could provide a new design pathway for polarization-tunability in man-made photonic devices.

Details

ISSN :
20452322
Volume :
6
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....95f5483e8e3e45880baaf73181f38808