Back to Search Start Over

A combined beta and normal random-effects model for repeated, overdispersed binary and binomial data

Authors :
Geert Verbeke
Geert Molenberghs
Samuel Iddi
Clarice Garcia Borges Demétrio
MOLENBERGHS, Geert
VERBEKE, Geert
IDDI, Samuel
DEMETRIO, Clarice
Source :
Journal of Multivariate Analysis. 111:94-109
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Non-Gaussian outcomes are often modeled using members of the so-called exponential family. Notorious members are the Bernoulli model for binary data, leading to logistic regression, and the Poisson model for count data, leading to Poisson regression. Two of the main reasons for extending this family are (1) the occurrence of overdispersion, meaning that the variability in the data is not adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of hierarchical structure in the data, stemming from clustering in the data which, in turn, may result from repeatedly measuring the outcome, for various members of the same family, etc. The first issue is dealt with through a variety of overdispersion models, such as, for example, the beta-binomial model for grouped binary data and the negative-binomial model for counts. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. While both of these phenomena may occur simultaneously, models combining them are uncommon. This paper starts from the broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. We place particular emphasis on so-called conjugate random effects at the level of the mean for the first aspect and normal random effects embedded within the linear predictor for the second aspect, even though our family is more general. The binary and binomial cases are our focus. Apart from model formulation, we present an overview of estimation methods, and then settle for maximum likelihood estimation with analytic-numerical integration. The methodology is applied to two datasets of which the outcomes are binary and binomial, respectively. (C) 2012 Elsevier Inc. All rights reserved. Financial support from the IAP research network #P6/03 of the Belgian Government (Belgian Science Policy) is gratefully acknowledged. This work was partially supported by a grant from Conselho Nacional de Desenvolvimento Cientifico e Tecnologia-CNPq, a Brazilian science funding agency.

Details

ISSN :
0047259X
Volume :
111
Database :
OpenAIRE
Journal :
Journal of Multivariate Analysis
Accession number :
edsair.doi.dedup.....95e9de8143bec4472eff3341e8be5075
Full Text :
https://doi.org/10.1016/j.jmva.2012.05.005