Back to Search Start Over

A logarithmic Sobolev form of the Li-Yau parabolic inequality

Authors :
Dominique Bakry
Michel Ledoux
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Source :
Revista Matemática Iberoamericana (1985-2001), Revista Matemática Iberoamericana (1985-2001), 2006, 22 (2), pp.683-702, Rev. Mat. Iberoamericana 22, no. 2 (2006), 683-702
Publication Year :
2006
Publisher :
European Mathematical Society - EMS - Publishing House GmbH, 2006.

Abstract

International audience; We present a finite dimensional version of the logarithmic Sobolev inequality for heat kernel measures of non-negatively curved diffusion operators that contains and improves upon the Li-Yau parabolic inequality. This new inequality is of interest already in Euclidean space for the standard Gaussian measure. The result may also be seen as an extended version of the semigroup commutation properties under curvature conditions. It may be applied to reach optimal Euclidean logarithmic Sobolev inequalities in this setting. Exponential Laplace differential inequalities through the Herbst argument furthermore yield diameter bounds and dimensional estimates on the heat kernel volume of balls.

Details

ISSN :
02132230
Database :
OpenAIRE
Journal :
Revista Matemática Iberoamericana
Accession number :
edsair.doi.dedup.....95885a181a883da9092b276faf0fddae
Full Text :
https://doi.org/10.4171/rmi/470