Back to Search Start Over

A positive cell vertex Godunov scheme for a Beeler–Reuter based model of cardiac electrical activity

Authors :
Mostafa Bendahmane
Fatima Mroue
Mazen Saad
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)
Modélisation et calculs pour l'électrophysiologie cardiaque (CARMEN)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IHU-LIRYC
Université Bordeaux Segalen - Bordeaux 2-CHU Bordeaux [Bordeaux]-CHU Bordeaux [Bordeaux]
Université Libanaise, Ecole Doctorale des Sciences et de Technologie
École Centrale de Nantes (ECN)
Source :
Numerical Methods for Partial Differential Equations, Numerical Methods for Partial Differential Equations, 2021, 37 (1), pp.262-301. ⟨10.1002/num.22528⟩
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

International audience; The monodomain model is a widely used model in electrocardiology to simulate the propagation of electrical potential in the myocardium. In this paper, we investigate a positive nonlinear control volume finite element (CVFE) scheme, based on Godunov's flux approximation of the diffusion term, for the monodomain model coupled to a physiological ionic model (the Beeler-Reuter model) and using an anisotropic diffusion tensor. In this scheme, degrees of freedom are assigned to vertices of a primal triangular mesh, as in conforming finite element methods. The diffusion term which involves an anisotropic tensor is discretized on a dual mesh using the diffusion fluxes provided by the conforming finite element reconstruction on the primal mesh and the other terms are discretized by means of an upwind finite volume method on the dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on the transmissibility coefficients. By using a compactness argument, we obtain the convergence of the discrete solution and as a consequence, we get the existence of a weak solution of the original model. Finally, we illustrate the efficiency of the proposed scheme by exhibiting some numerical results.

Details

ISSN :
10982426 and 0749159X
Volume :
37
Database :
OpenAIRE
Journal :
Numerical Methods for Partial Differential Equations
Accession number :
edsair.doi.dedup.....955d504ffd6092ab1df3a8243b3dffce
Full Text :
https://doi.org/10.1002/num.22528