Back to Search
Start Over
Evaluation of the Abbott RealTime quantitative CMV and EBV assays using the maxCycle protocol in a laboratory automation context
- Source :
- Journal of Virological Methods. 270:137-145
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Real-time PCR are often used for the diagnosis and monitoring of Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections in susceptible populations. In this context, we evaluated the analytical performances of the Abbott RealTime CMV/EBV maxCycle protocol automated on the m2000 platform (Abbott). It was compared to our routinely-used procedure consisting of a NucleoMag® DNA extraction automated on a STARlet platform followed by manually processed CMV and EBV quantitative real-time PCR (Diagenode). In this study, we showed that both EBV assays exhibited a similar sensitivity but with a better precision for the EBV Abbott RealTime assay. For the CMV performances, the Abbott assay was more sensitive and more precise than our routine method. The use of WHO International Standards also indicated a slight underestimation of the viral loads (-0.25 log10 IU/mL and -0.21 log10 IU/mL for CMV and EBV assays respectively) while these were rather overestimated with the Starlet/Diagenode method (0.48 log10 IU/mL and 0.19 log10 IU/mL for CMV and EBV assays respectively). These trends were confirmed using relevant whole-blood clinical samples and external quality controls. The workflows were also compared and we highlighted a significant technician hands-on time reduction (-63%) using the Abbott CMV/EBV maxCycle automated protocol.
- Subjects :
- Automation, Laboratory
0301 basic medicine
Herpesvirus 4, Human
030106 microbiology
Cytomegalovirus
Reproducibility of Results
Context (language use)
Viral Load
Biology
Real-Time Polymerase Chain Reaction
medicine.disease_cause
Sensitivity and Specificity
Virology
DNA extraction
Specimen Handling
03 medical and health sciences
Blood
030104 developmental biology
Laboratory automation
medicine
Humans
Viral load
Subjects
Details
- ISSN :
- 01660934
- Volume :
- 270
- Database :
- OpenAIRE
- Journal :
- Journal of Virological Methods
- Accession number :
- edsair.doi.dedup.....954c5852a2d0dcb226fcb78ec37f4150
- Full Text :
- https://doi.org/10.1016/j.jviromet.2019.05.007