Back to Search Start Over

Type I secretion systems - a story of appendices

Authors :
Lutz Schmitt
Kerstin Kanonenberg
Christian Schwarz
Source :
Research in microbiology. 164(6)
Publication Year :
2012

Abstract

Secretion is an essential task for prokaryotic organisms to interact with their surrounding environment. In particular, the production of extracellular proteins and peptides is important for many aspects of an organism's survival and adaptation to its ecological niche. In Gram-negative bacteria, six different protein secretion systems have been identified so far, named Type I to Type VI; differing greatly in their composition and mechanism of action (Economou et al., 2006). The two membranes present in Gram-negative bacteria are negotiated either by one-step transport mechanisms (Type I and Type III), where the unfolded substrate is translocated directly into the extracellular space, without any periplasmic intermediates, or by two-step mechanisms (Type II and Type V), where the substrate is first transported into the periplasm to allow folding before a second transport step across the outer membrane occurs. Here we focus on Type I secretion systems and summarise our current knowledge of these one-step transport machineries with emphasis on the N-terminal extensions found in many Type I-specific ABC transporters. ABC transporters containing an N-terminal C39 peptidase domain cut off a leader peptide present in the substrate prior to secretion. The function of the second type of appendix, the C39 peptidase-like domain (CLD), is not yet completely understood. Recent results have shown that it is nonetheless essential for secretion and interacts specifically with the substrate of the transporter. The third group present does not contain any appendix. In light of this difference we compare the function of the appendix and the differences that might exist among the three families of T1SS.

Details

ISSN :
17697123
Volume :
164
Issue :
6
Database :
OpenAIRE
Journal :
Research in microbiology
Accession number :
edsair.doi.dedup.....9520b1ebddecc55ba37b01e23636777b