Back to Search Start Over

Constructing Metal-Based Structures on Nanopatterned Etched Silicon

Authors :
Jillian M. Buriak
Yinghong Qiao
Xiaojiang Zhang
Lina Xu
Source :
ACS Nano. 5:5015-5024
Publication Year :
2011
Publisher :
American Chemical Society (ACS), 2011.

Abstract

Silicon surfaces with nanoscale etched patterns were obtained using polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer films as templates, followed by brief immersion in HF(aq). The resulting interfaces were comprised of pseudohexagonal arrays of pits on the silicon, whose shapes depended upon the chosen silicon orientation. The top unetched face of silicon remains capped by the native oxide, and the pit interiors are terminated by Si-H x. Selective chemical functionalization via these two chemical handles was demonstrated to be a viable approach toward building nanostructured metal oxide and metal features within these silicon pits and on the top face. Using a series of interfacial chemical reactions, including oxidation (of Si-H x-terminated regions), hydrosilylation, and alkoxysilane-based chemistry on silicon oxide, the growth of metal-based structures can be spatially controlled. In the first approach, titania nanobowls were grown within the etch pits, and in the second, galvanic displacement was used to produce gold nanoparticles either within the etch pits, on the top silicon face, or both. © 2011 American Chemical Society.

Details

ISSN :
1936086X and 19360851
Volume :
5
Database :
OpenAIRE
Journal :
ACS Nano
Accession number :
edsair.doi.dedup.....95134e0b08c73dd57d641aee8f957c8a
Full Text :
https://doi.org/10.1021/nn201109s