Back to Search
Start Over
Differential Interleukin-8 thresholds for chemotaxis and netosis in human neutrophils
- Source :
- Eur J Immunol
- Publication Year :
- 2021
-
Abstract
- In humans, IL-8 (CXCL8) is a key chemokine for chemotaxis of polymorphonuclear leukocytes and monocytes/macrophages when acting on CXCR1 and CXCR2. CXCL8 activity on neutrophils includes chemotaxis and eliciting the extrusion of neutrophil extracellular traps (NETs). In this study, we show that concentrations of IL-8 that induce NETosis surpass in at least one order of magnitude those required to elicit chemoattraction in human neutrophils. IL-8-induced NETosis was less dependent on G-proteins than migration, while extracellular Ca+2 chelation similarly inhibited both processes. Reactive oxygen species (ROS) were more important for NETosis than for chemotaxis as evidenced by neutralization with N-acetyl -cysteine. Interestingly, selective blockade with anti-CXCR1 mAb inhibited NETosis much more readily than chemotaxis, while pharmacological inhibition of both CXCR1 and CXCR2, or selective inhibition for CXCR2 alone, similarly inhibited both functions. Together, these results propose a model according to which low concentrations of IL-8 in a gradient attract neutrophils to the inflammatory foci, while high receptor-saturating concentrations of IL-8 give rise to NETosis once leukocytes reach the core of the inflammatory insult.
- Subjects :
- 0301 basic medicine
Chemokine
medicine.drug_class
Neutrophils
Immunology
Monoclonal antibody
Extracellular Traps
Receptors, Interleukin-8B
Receptors, Interleukin-8A
03 medical and health sciences
0302 clinical medicine
Extracellular
medicine
Immunology and Allergy
Humans
Interleukin 8
CXC chemokine receptors
chemistry.chemical_classification
Reactive oxygen species
biology
Chemotaxis
Interleukin-8
Neutrophil extracellular traps
Cell biology
Acetylcysteine
030104 developmental biology
chemistry
biology.protein
Reactive Oxygen Species
030215 immunology
Signal Transduction
Subjects
Details
- ISSN :
- 00142980
- Database :
- OpenAIRE
- Journal :
- Eur J Immunol
- Accession number :
- edsair.doi.dedup.....94fd445c78f8f2f246148c3bcb3671f9
- Full Text :
- https://doi.org/10.1002/eji.202049029