Back to Search
Start Over
Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy
- Source :
- Cell Death & Disease, Cell Death and Disease, Cell Death and Disease, Nature Publishing Group, 2016, 7 (4), pp.e2195. 〈http://www.nature.com/cddis/journal/v7/n4/full/cddis201696a.html〉. 〈10.1038/cddis.2016.96〉, Cell Death and Disease, Nature Publishing Group, 2016, 7 (4), pp.e2195. ⟨10.1038/cddis.2016.96⟩
- Publication Year :
- 2016
- Publisher :
- Nature Publishing Group, 2016.
-
Abstract
- Inactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criterion of the screen was increased sensitivity of p53-negative tumor cells to cisplatin (CDDP) in a Wip1-dependent manner. We have found that a treatment with a low dose (75 nM) of MK-1775, a recently described specific chemical inhibitor of Wee1, decreases CDDP-induced H2AX phosphorylation in p53-negative cells and enhances the Wip1-sensitization of p53-negative tumors. We were able to reduce CDDP effective concentration by 40% with a combination of Wip1 overexpression and Wee1 kinase inhibition. We have observed that Wee1 inhibition potentiates Wip1-dependent tumor sensitization effect by reducing levels of Hipk2 kinase, a negative regulator of Wip1 pathway. In addition, during CDDP treatment, the combination of Wee1 inhibition and Wip1 overexpression has a mild but significant protective effect in normal cells and tissues. Our results indicate that inhibition of the negative regulators of Wip1 pathway, Wee1 and Hipk2, in p53-negative tumors could potentiate efficiency of chemotherapeutic agents without concomitant increase of cytotoxicity in normal tissues. The development and clinical use of Wee1 and Hipk1 kinase chemical inhibitors might be a promising strategy to improve anti-cancer therapy.
- Subjects :
- Wip1
Apoptosis
Cell Cycle Proteins
Pharmacology
MESH: G2 Phase Cell Cycle Checkpoints
Histones
MESH : Phosphorylation
Mice
MESH : Cell Cycle Proteins
MESH: Animals
MESH: Tumor Suppressor Protein p53
MESH: Histones
Kinase
Tp53 mutations
MESH : Mice, Transgenic
3. Good health
Protein Phosphatase 2C
Survival Rate
MESH : Antineoplastic Agents
H2ax phosphorylation
P53 activation
MESH: Protein Phosphatase 2C
RNA Interference
MESH : Colorectal Neoplasms
MESH : Carrier Proteins
Histone H2ax
MESH: Mitochondria
Immunology
Human fibroblasts
MESH: Carrier Proteins
Antineoplastic Agents
MESH: Protein-Tyrosine Kinases
MESH: Protein-Serine-Threonine Kinases
MESH : Cisplatin
03 medical and health sciences
MESH: Cell Cycle Proteins
Genotoxic stress
MESH : Protein-Tyrosine Kinases
Humans
MESH : Histones
Anticancer Therapy
MESH: DNA Damage
Cisplatin
MESH: Humans
MESH: Phosphorylation
[ SDV.BC ] Life Sciences [q-bio]/Cellular Biology
MESH : Humans
MESH : Nuclear Proteins
030104 developmental biology
Cancer cell
MESH: Antineoplastic Agents
Carrier Proteins
MESH: Nuclear Proteins
MESH : Apoptosis
Dna-damage response
0301 basic medicine
Cancer Research
MESH: Caspase 3
MESH : Caspase 3
Phosphorylation
Cytotoxicity
MESH : DNA Damage
Sensitization
medicine.diagnostic_test
Caspase 3
Nuclear Proteins
Protein-Tyrosine Kinases
MESH : Survival Rate
Mitochondria
G2 Phase Cell Cycle Checkpoints
Wee1
medicine.anatomical_structure
MESH : Protein Phosphatase 2C
Original Article
MESH : Mitochondria
Colorectal Neoplasms
medicine.drug
MESH : Protein-Serine-Threonine Kinases
MESH: Cell Line, Tumor
MESH: Survival Rate
MESH: Mice, Transgenic
MESH: RNA Interference
Phosphatase
Mice, Transgenic
[SDV.BC]Life Sciences [q-bio]/Cellular Biology
Biology
Protein Serine-Threonine Kinases
Flow cytometry
Cellular and Molecular Neuroscience
Cell Line, Tumor
MESH : Mice
medicine
Animals
MESH: Mice
MESH : Cell Line, Tumor
MESH: Apoptosis
Cell Biology
MESH : Tumor Suppressor Protein p53
MESH: Cisplatin
Cancer research
biology.protein
MESH : Animals
MESH : G2 Phase Cell Cycle Checkpoints
MESH : RNA Interference
Tumor Suppressor Protein p53
MESH: Colorectal Neoplasms
DNA Damage
Subjects
Details
- Language :
- English
- ISSN :
- 20414889
- Volume :
- 7
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Cell Death & Disease
- Accession number :
- edsair.doi.dedup.....94c549fa132fd556be508b199e05ea66
- Full Text :
- https://doi.org/10.1038/cddis.2016.96〉