Back to Search Start Over

A Research Method for Semi-Automated Large-Scale Cultivation of Maize to Full Maturity in an Artificial Environment

Authors :
Chad J. Penn
Matthew Wiethorn
James J. Camberato
Source :
Agronomy, Volume 11, Issue 10, Agronomy, Vol 11, Iss 1898, p 1898 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

There are unique advantages and disadvantages to using the field, greenhouse, growth chamber, and media-less techniques for growing maize (Zea mays L.) for research purposes. Soil-buffered nutrients such as phosphorus (P) do not allow for precise control of solution concentrations in the field, while greenhouses, growth chambers, and hydroponics provide limiting conditions. The objectives of this study were to develop a practical technique for productively cultivating several maize plants from seed to physiological maturity (R6) in a grow room environment, with precise control of nutrient availability and timing, and evaluate its utility for the purpose of measuring plant responses to variations in nutrient concentrations. The construction and testing of a semi-automated grow room for conducting nutrient studies on 96 maize plants utilizing simulated or artificial conditions are described. Plant growth response to a range of solution phosphorus (P) concentrations was tested to evaluate the utility of the technique. Maize yield components were measured and compared to values for field-grown plants. Due to ideal conditions and successful simulation of light intensity, diurnal fluctuations in temperature and RH, and changing photoperiod, grain yield and tissue nutrient concentrations were comparable to field-grown maize, although with greater shoot biomass. Plants responded positively to increased P concentrations in fertigation. The technique can be used for large-scale plant nutrient studies that require precise control of bioavailability and timing as well as manipulation of light intensity and photoperiod duration.

Details

Language :
English
ISSN :
20734395
Database :
OpenAIRE
Journal :
Agronomy
Accession number :
edsair.doi.dedup.....94bc2bc8b566e4f996797f6b5015c624
Full Text :
https://doi.org/10.3390/agronomy11101898