Back to Search Start Over

Harmonic Functions And Linear Elliptic Dirichlet Problems With Random Boundary Values--Stochastic Extensions Of Some Classical Theorems And Estimates

Authors :
Miller, Steven D
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

Let $\psi:{\mathcal{D}}\rightarrow{\mathbf{R}}$ be a harmonic function such that $\Delta\psi(x)=0$ for all $x\in\mathcal{D}\subset{\mathbf{R}}^{n}$. There are then many well-established classical results:the Dirichlet problem and Poisson formula, Harnack inequality, the Maximum Principle, the Mean Value Property etc. Here, a 'noisy' or random domain is one for which there also exists a classical scalar Gaussian random field (GRF) ${\mathscr{J}(x)}$ defined for all $x\in{\mathcal{D}}$ or $x\in\partial {\mathcal{D}}$ with respect to a probability space $[\Omega,\mathcal{F},{\mathrm{I\!P}}]$. The GRF has vanishing mean value $\mathbf{E}[\![\mathscr{J}(x)]\!] = 0$ and a regulated covariance ${{\mathbf{E}}}[\![{{\mathscr{J}}(x)} \otimes {{\mathscr{J}}(y)}]\!] = \alpha J(x,y;\xi)$ for all $(x,y)\in{\mathcal{D}}$ and/or $(x,y)\in{\partial\mathcal{D}}$, with correlation length $\xi$ and ${{\mathbf{E}}}[\![{{\mathscr{J}}(x)} \otimes {{\mathscr{J}}}(x)]\!] = \alpha

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....94b9cf6744f77f373a9667e096e78bc0
Full Text :
https://doi.org/10.48550/arxiv.2005.02556