Back to Search Start Over

Polyomavirus Small T Antigen Controls Viral Chromatin Modifications through Effects on Kinetics of Virus Growth and Cell Cycle Progression

Authors :
Jean Dahl
H. Isaac Chen
Thomas L. Benjamin
Michael George
Source :
Journal of Virology. 81:10064-10071
Publication Year :
2007
Publisher :
American Society for Microbiology, 2007.

Abstract

Minichromosomes of wild-type polyomavirus were previously shown to be highly acetylated on histones H3 and H4 compared either to bulk cell chromatin or to viral chromatin of nontransforming hr-t mutants, which are defective in both the small T and middle T antigens. A series of site-directed virus mutants have been used along with antibodies to sites of histone modifications to further investigate the state of viral chromatin and its dependence on the T antigens. Small T but not middle T was important in hyperacetylation at major sites in H3 and H4. Mutants blocked in middle T signaling pathways but encoding normal small T showed a hyperacetylated pattern similar to that of wild-type virus. The hyperacetylation defect of hr-t mutant NG59 was partially complemented by growth of the mutant in cells expressing wild-type small T. In contrast to the hypoacetylated state of NG59, NG59 minichromosomes were hypermethylated at specific lysines in H3 and also showed a higher level of phosphorylation at H3ser10, a modification associated with the late G 2 and M phases of the cell cycle. Comparisons of virus growth kinetics and cell cycle progression in wild-type- and NG59-infected cells showed a correlation between the phase of the cell cycle at which virus assembly occurred and histone modifications in the progeny virus. Replication and assembly of wild-type virus were completed largely during S phase. Growth of NG59 was delayed by about 12 h with assembly occurring predominately in G 2 . These results suggest that small T affects modifications of viral chromatin by altering the temporal coordination of virus growth and the cell cycle.

Details

ISSN :
10985514 and 0022538X
Volume :
81
Database :
OpenAIRE
Journal :
Journal of Virology
Accession number :
edsair.doi.dedup.....949824cce2b954ddaba8abe21a042464