Back to Search Start Over

Prediction of Breast Cancer Treatment-Induced Fatigue by Machine Learning Using Genome-Wide Association Data

Authors :
Paul Cottu
Anne-Laure Martin
Anne Boland
Cécile Charles
Jung Hun Oh
Marina Rousseau
Ines Vaz-Luis
Gwenn Menvielle
Joseph O. Deasy
Stefan Michiels
Céline Besse
Emilie Thomas
Jean-François Deleuze
Olivier Tredan
Patricia A. Ganz
Sandrine Boyault
Sibille Everhard
Fabrice Andre
Antonio Di Meglio
Ann H. Partridge
Agnès Dumas
Christelle Levy
Sangkyu Lee
Memorial Sloan Kettering Cancer Center (MSKCC)
Institut Gustave Roussy (IGR)
Prédicteurs moléculaires et nouvelles cibles en oncologie (PMNCO)
Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay
Centre de recherche en épidémiologie et santé des populations (CESP)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay
Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)
Centre Léon Bérard [Lyon]
Centre National de Recherche en Génomique Humaine (CNRGH)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Institut de Biologie François JACOB (JACOB)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Fondation Synergie Lyon Cancer [Lyon]
Institut Curie [Paris]
Centre Régional de Lutte contre le Cancer François Baclesse [Caen] (UNICANCER/CRLC)
Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)
UNICANCER
University of California [Los Angeles] (UCLA)
University of California (UC)
Dana-Farber Cancer Institute [Boston]
Centre d'Etude du Polymorphisme Humain (CEPH)
Institut Universitaire d'Hématologie (IUH)
Université Paris Diderot - Paris 7 (UPD7)-Université Paris Diderot - Paris 7 (UPD7)-Fondation Jean Dausset-Université Paris Cité (UPCité)
Synergie Lyon Cancer [Lyon]
Gestionnaire, Hal Sorbonne Université
Source :
JNCI Cancer Spectr, JNCI Cancer Spectrum, JNCI Cancer Spectrum, 2020, 4 (5), pkaa039. ⟨10.1093/jncics/pkaa039⟩
Publication Year :
2019

Abstract

Background We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and germline genome-wide data. Methods We accessed germline genome-wide data of 2799 early-stage breast cancer patients from the Cancer Toxicity study (NCT01993498). The primary endpoint was defined as scoring zero at diagnosis and higher than quartile 3 at 1 year after primary treatment completion on European Organization for Research and Treatment of Cancer quality-of-life questionnaires for Overall Fatigue and on the multidimensional questionnaire for Physical, Emotional, and Cognitive fatigue. First, we tested univariate associations of each endpoint with clinical variables and genome-wide variants. Then, using preselected clinical (false discovery rate < 0.05) and genomic (P Results Statistically significant clinical associations were found only with Emotional and Cognitive Fatigue, including receipt of chemotherapy, anxiety, and pain. Some single nucleotide polymorphisms had some degree of association (P Conclusions Genomic analyses in this large cohort of breast cancer survivors suggest a possible genetic role for severe Cognitive Fatigue that warrants further exploration.

Details

ISSN :
25155091
Volume :
4
Issue :
5
Database :
OpenAIRE
Journal :
JNCI cancer spectrum
Accession number :
edsair.doi.dedup.....9492e2b2e7a1754eaac72efa2162c3f8
Full Text :
https://doi.org/10.1093/jncics/pkaa039⟩