Back to Search Start Over

Cocoa bean fingerprinting via correlation networks

Authors :
Santhust Kumar
Roy N. D’Souza
Marcello Corno
Matthias S. Ullrich
Nikolai Kuhnert
Marc-Thorsten Hütt
Source :
npj Science of Food, Vol 6, Iss 1, Pp 1-9 (2022), NPJ Science of Food
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Cocoa products have a remarkable chemical and sensory complexity. However, in contrast to other fermentation processes in the food industry, cocoa bean fermentation is left essentially uncontrolled and is devoid of standardization. Questions of food authenticity and food quality are hence particularly challenging for cocoa. Here we provide an illustration how network science can support food fingerprinting and food authenticity research. Using a large dataset of 140 cocoa samples comprising three cocoa fermentation/processing stages and eight countries, we obtain correlation networks between the cocoa samples by computing measures of pairwise correlation from their liquid chromatography-mass spectrometry (LC-MS) profiles. We find that the topology of correlation networks derived from untargeted LC-MS profiles is indicative of the fermentation and processing stage as well as the origin country of cocoa samples. Progressively increasing the correlation threshold firstly reveals network clusters based on processing stage and later country-based clusters. We present both, qualitative and quantitative evidence through network visualization, network statistics and concepts from machine learning. In our view, this network-based approach for classifying mass spectrometry data has broad applicability beyond cocoa.

Details

ISSN :
23968370
Volume :
6
Database :
OpenAIRE
Journal :
npj Science of Food
Accession number :
edsair.doi.dedup.....9492725287739a112c83737fa9ad488b
Full Text :
https://doi.org/10.1038/s41538-021-00120-4