Back to Search Start Over

Sulfonylurea binding to a low-affinity site inhibits the Na/K-ATPase and the KATP channel in insulin-secreting cells

Authors :
C J Mirell
S R Levin
D G Johnson
Bernard Ribalet
Source :
The Journal of General Physiology
Publication Year :
1996
Publisher :
Rockefeller University Press, 1996.

Abstract

We have used hamster insulinoma tumor (HIT) cells, an insulin-secreting tumor cell line, to investigate modulation of the Na/K-ATPase and of the ATP-sensitive K channel (K(ATP)) by the sulfonylurea glyburide. Membrane proteins from cells cultured in RPMI with 11 mM glucose have at least two glyburide receptor populations, as evidenced by high and low binding affinity constants, (K(d) = 0.96 and 91 nM, respectively). In these cells K(ATP) channel activity was blocked by low glyburide concentrations, IC(50) = 5.4 nM. At 12.5 nM glyburide the inhibition developed slowly, tau = 380 s, and caused reduction of channel activity by 75 percent. At higher concentrations, however, inhibition occurred at a fast rate, tau = 42 s at 100 nM, and was almost complete. Na/K-ATPase activity measured enzymatically and electrophysiologically was also suppressed by glyburide, but higher concentrations were needed, IC(50) = 20-40 nM. Inhibition occurred rapidly, tau = 30 s at 50 nM, when maximum, activity was reduced by 40 percent. By contrast, cells cultured in RPMI supplemented with 25 mM glucose exhibit a single receptor population binding glyburide with low affinity, K(d)= 68 nM. In these cells inhibition of the Na/K-ATPase by the sulfonylurea was similar to that observed in cells cultured in 11 mM glucose, but K(ATP) channel inhibition was markedly altered. Inhibition occurred only at high concentrations of glyburide and at a fast rate; maximum inhibition was observed at 100 nM. Based on these data, we propose that glyburide binding to the high affinity site affects primarily K(ATP) channel activity, while interaction with the low affinity site inhibits both Na/K-ATPase and K(ATP) channel activities. The latter observation suggests possible functional interactions between the Na/K-ATPase and the K(ATP) channel.

Details

ISSN :
15407748 and 00221295
Volume :
107
Database :
OpenAIRE
Journal :
Journal of General Physiology
Accession number :
edsair.doi.dedup.....942d91ea8ef13b6fba925b6b81d72019
Full Text :
https://doi.org/10.1085/jgp.107.2.231