Back to Search Start Over

Spin fluctuations associated with the collapse of the pseudogap in a cuprate superconductor

Authors :
M. Zhu
D. J. Voneshen
S. Raymond
O. J. Lipscombe
C. C. Tam
S. M. Hayden
H. H. Wills Physics Laboratory [Bristol]
University of Bristol [Bristol]
​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​ISIS Neutron and Muon Source (ISIS)
STFC Rutherford Appleton Laboratory (RAL)
Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC)
Magnétisme et Diffusion Neutronique (MDN )
Modélisation et Exploration des Matériaux (MEM)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Source :
Nature Physics, Nature Physics, 2023, 19 (1), pp.99-105. ⟨10.1038/s41567-022-01825-3⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

Theories of the origin of superconductivity in cuprates are dependent on an understanding of their normal state which exhibits various competing orders. Transport and thermodynamic measurements on La$_{2-x}$Sr$_x$CuO$_4$ show signatures of a quantum critical point, including a peak in the electronic specific heat $C$ versus doping p, near the doping p*, where the pseudogap collapses. The fundamental nature of the fluctuations associated with this peak is unclear. Here we use inelastic neutron scattering to show that close to $T_c$ and near p*, there are low-energy collective spin excitations with characteristic energies $\approx$ 5 meV. The correlation length of the spin fluctuations does not diverge in spite of the low energy scale and we conclude that the underlying quantum criticality is not due to antiferromagnetism but most likely to a collapse of the pseudogap. We show that the large specific heat near p* can be understood in terms of collective spin fluctuations. The spin fluctuations we measure exist across the superconducting phase diagram and may be related to the strange metal behaviour observed in overdoped cuprates.

Details

Language :
English
ISSN :
17452473 and 14764636
Database :
OpenAIRE
Journal :
Nature Physics, Nature Physics, 2023, 19 (1), pp.99-105. ⟨10.1038/s41567-022-01825-3⟩
Accession number :
edsair.doi.dedup.....94215c4b5b47aa4245e9b080861c26d1
Full Text :
https://doi.org/10.1038/s41567-022-01825-3⟩