Back to Search Start Over

Electrochemical Strategy for Hydrazine Synthesis: Development and Overpotential Analysis of Methods for Oxidative N–N Coupling of an Ammonia Surrogate

Authors :
Fei Wang
Yeon Jung Kim
James B. Gerken
Desiree M. Bates
Shannon S. Stahl
Source :
J Am Chem Soc
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

Hydrazine is an important industrial chemical and fuel that has attracted considerable attention for use in liquid fuel cells. Ideally, hydrazine could be prepared via direct oxidative coupling of ammonia, but thermodynamic and kinetic factors limit the viability of this approach. The present study evaluates three different electrochemical strategies for the oxidative homocoupling of benzophenone imine, a readily accessible ammonia surrogate. Hydrolysis of the resulting benzophenone azine affords hydrazine and benzophenone, with the latter amenable to recycling. The three different electrochemical N–N coupling methods include (1) a proton-coupled electron-transfer process promoted by a phosphate base, (2) an iodine-mediated reaction involving intermediate N–I bond formation, and (3) a copper-catalyzed N–N coupling process. Analysis of the thermodynamic efficiencies for these electrochemical imine-to-azine oxidation reactions reveals low overpotentials (η) for the copper and iodine mediated processes (390 and 470 mV, respectively), but a much higher value for the proton-coupled pathway (η ~ 1.6 V). A similar approach is used to assess molecular electrocatalytic methods for electrochemical oxidation of ammonia to dinitrogen.

Details

ISSN :
15205126 and 00027863
Volume :
142
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....9419cd54eace3b079e42aa93c6f39fe3
Full Text :
https://doi.org/10.1021/jacs.0c04626