Back to Search
Start Over
Jim Hyde and the ENDOR Connection: A Personal Account
- Source :
- Applied Magnetic Resonance
- Publication Year :
- 2017
-
Abstract
- In this minireview, we report on our year-long EPR work, such as electron–nuclear double resonance (ENDOR), pulse electron double resonance (PELDOR) and ELDOR-detected NMR (EDNMR) at X-band and W-band microwave frequencies and magnetic fields. This report is dedicated to James S. Hyde and honors his pioneering contributions to the measurement of spin interactions in large (bio)molecules. From these interactions, detailed information is revealed on structure and dynamics of macromolecules embedded in liquid- solution or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultra-fast electronics for signal data handling and processing have pushed the limits of EPR spectroscopy and its multi-frequency extensions to new horizons concerning sensitivity of detection, selectivity of molecular interactions and time resolution. Among the most important advances is the upgrading of EPR to high magnetic fields, very much in analogy to what happened in NMR. The ongoing progress in EPR spectroscopy is exemplified by reviewing various multi-frequency electron–nuclear double-resonance experiments on organic radicals, light- generated donor–acceptor radical pairs in photosynthesis, and site- specifically nitroxide spin-labeled bacteriorhodopsin, the light-driven proton pump, as well as EDNMR and ENDOR on nitroxides. Signal and resolution enhancements are particularly spectacular for ENDOR, EDNMR and PELDOR on frozen-solution samples at high Zeeman fields. They provide orientation selection for disordered samples approaching single-crystal resolution at canonical g-tensor orientations—even for molecules with small g-anisotropies. Dramatic improvements of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Thus, unique structural and dynamic information is revealed that can hardly be obtained by other analytical techniques. Micromolar concentrations of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems—offering exciting applications for physicists, chemists, biochemists and molecular biologists.
- Subjects :
- Nitroxide mediated radical polymerization
Original Paper
Materials science
Zeeman effect
010304 chemical physics
biology
Solid-state physics
Resonance
Bacteriorhodopsin
010402 general chemistry
01 natural sciences
Atomic and Molecular Physics, and Optics
0104 chemical sciences
law.invention
Paramagnetism
symbols.namesake
Chemical physics
law
0103 physical sciences
symbols
biology.protein
Molecule
Electron paramagnetic resonance
Subjects
Details
- ISSN :
- 09379347
- Volume :
- 48
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Applied magnetic resonance
- Accession number :
- edsair.doi.dedup.....94039c7d9ee57998732b0329b85c74b5