Back to Search Start Over

Application of Deep Learning methods to analysis of Imaging Atmospheric Cherenkov Telescopes data

Authors :
Constantin Steppa
Ullrich Schwanke
K. Egberts
Tim Holch
I. Shilon
Thomas Lohse
Stefan Funk
Tobias Fischer
M. Büchele
M. Kraus
Publication Year :
2018

Abstract

Ground based gamma-ray observations with Imaging Atmospheric Cherenkov Telescopes (IACTs) play a significant role in the discovery of very high energy (E > 100 GeV) gamma-ray emitters. The analysis of IACT data demands a highly efficient background rejection technique, as well as methods to accurately determine the position of its source in the sky and the energy of the recorded gamma-ray. We present results for background rejection and signal direction reconstruction from first studies of a novel data analysis scheme for IACT measurements. The new analysis is based on a set of Convolutional Neural Networks (CNNs) applied to images from the four H.E.S.S. phase-I telescopes. As the H.E.S.S. cameras pixels are arranged in a hexagonal array, we demonstrate two ways to use such image data to train CNNs: by resampling the images to a square grid and by applying modified convolution kernels that conserve the hexagonal grid properties. The networks were trained on sets of Monte-Carlo simulated events and tested on both simulations and measured data from the H.E.S.S. array. A comparison between the CNN analysis to current state-of-the-art algorithms reveals a clear improvement in background rejection performance. When applied to H.E.S.S. observation data, the CNN direction reconstruction performs at a similar level as traditional methods. These results serve as a proof-of-concept for the application of CNNs to the analysis of events recorded by IACTs. (C) 2018 Published by Elsevier B.V.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....939b1fb2797575eff705538a8e0722c5