Back to Search Start Over

The Drosophila Fab-7 boundary element modulates Abd-B gene activity in the genital disc by guiding an inversion of collinear chromatin organization and alternative promoter use

Authors :
Laura Moniot-Perron
Benoit Moindrot
Line Manceau
Joanne Edouard
Yan Jaszczyszyn
Pascale Gilardi-Hebenstreit
Céline Hernandez
Sébastien Bloyer
Daan Noordermeer
Institut de Biologie Intégrative de la Cellule (I2BC)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2022
Publisher :
Cold Spring Harbor Laboratory, 2022.

Abstract

SummaryHox genes encode transcription factors that specify segmental identities along the Antero-Posterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, an evolutionary conserved feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive replacement of histone modifications, reorganization of 3D chromatin architecture and sequential activation of boundary elements and cis-regulatory regions. To dissect functional hierarchies, we compared chromatin organization in larvae and in cell lines, with a focus on the Abd-B gene. Our work establishes the importance of the Fab-7 boundary element for insulation between 3D domains marked by different histone modifications. Interestingly, we detected a non-canonical inversion of collinear chromatin dynamics at the Abd-B gene, with the active histone domain decreasing in size. This chromatin organization differentially instructed alternative Abd-B promoter use, thereby expanding the possibilities to regulate transcriptional output.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....9384ad1d7cd45079fb05cfb5b1dd6015
Full Text :
https://doi.org/10.1101/2022.04.26.489596