Back to Search
Start Over
Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe
- Source :
- eLife, Vol 10 (2021), eLife, Katz, E, Li, J J, Jaegle, B, Ashkenazy, H, Abrahams, S R, Bagaza, C, Holden, S, Pires, C J, Angelovici, R & Kliebenstein, D J 2021, ' Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe ', eLife, vol. 10, e67784 . https://doi.org/10.7554/eLife.67784
- Publication Year :
- 2021
- Publisher :
- eLife Sciences Publications Ltd, 2021.
-
Abstract
- Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here, we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show that a combination of geography, environmental parameters, demography and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within-species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation.<br />eLife digest Since plants cannot move, they have evolved chemical defenses to help them respond to changes in their surroundings. For example, where animals run from predators, plants may produce toxins to put predators off. This approach is why plants are such a rich source of drugs, poisons, dyes and other useful substances. The chemicals plants produce are known as specialized metabolites, and they can change a lot between, and even within, plant species. The variety of specialized metabolites is a result of genetic changes and evolution over millions of years. Evolution is a slow process, yet plants are able to rapidly develop new specialized metabolites to protect them from new threats. Even different populations of the same species produce many distinct metabolites that help them survive in their surroundings. However, the factors that lead plants to produce new metabolites are not well understood, and it is not known how this affects genetic variation. To gain a better understanding of this process, Katz et al. studied 797 European variants of a common weed species called Arabidopsis thaliana, which is widely studied. The investigation found that many factors affect the range of specialized metabolites in each variant. These included local geography and environment, as well as genetics and population history (demography). Katz et al. revealed a pattern of relationships between the variants that could mirror their evolutionary history as the species spread and adapted to new locations. These results highlight the complex network of factors that affect plant evolution. Rapid diversification is key to plant survival in new and changing environments and has resulted in a wide range of specialized metabolites. As such they are of interest both for studying plant evolution and for understanding their ecology. Expanding similar work to more populations and other species will broaden the scope of our ability to understand how plants adapt to their surroundings.
- Subjects :
- 0106 biological sciences
0301 basic medicine
parallel evolution
Arabidopsis thaliana
Range (biology)
Arabidopsis
Plant Biology
01 natural sciences
Convergent evolution
Biology (General)
glucosinolates
Plant evolution
plant biology
education.field_of_study
Genome
Geography
Ecology
General Neuroscience
food and beverages
General Medicine
Biological Evolution
Europe
Phenotype
Medicine
Parallel evolution
ecology
Metabolic Networks and Pathways
Research Article
convergence evolution
QH301-705.5
Physiological
Ecology (disciplines)
Science
Population
Environment
Biology
General Biochemistry, Genetics and Molecular Biology
03 medical and health sciences
Genetics
Adaptation
education
General Immunology and Microbiology
specialized metabolites
fungi
Genetic Variation
Plant
biology.organism_classification
030104 developmental biology
A. thaliana
Biochemistry and Cell Biology
Weed
010606 plant biology & botany
Demography
Subjects
Details
- Language :
- English
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- eLife
- Accession number :
- edsair.doi.dedup.....9351a5f0c2c6fc26dbf2711d17dc5941