Back to Search Start Over

Green Synthesis and Investigation of Surface Effects of α-Fe2O3@TiO2 Nanocomposites by Impedance Spectroscopy

Authors :
Hira Sultan
Aeysha Sultan
Raha Orfali
Shagufta Perveen
Tahir Ali
Sana Ullah
Haji Muhammad Anas
Safina Ghaffar
Areej Al-Taweel
Muhammad Waqas
Waseem Shahzad
Aftaab Kareem
Aqsa Liaqat
Zaman Ashraf
Ayesha Shahid
Abdul Rauf
Source :
Materials; Volume 15; Issue 16; Pages: 5768
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Nanocomposites based on iron oxide/titanium oxide nanoparticles were prepared by employing green synthesis, which involved phytochemical-mediated reduction using ginger extract. XRD confirmed the composite formation, while scanning electron microscopy (SEM), dynamic light scattering (DLS), and energy-dispersive X-ray spectroscopy (EDX) was employed to investigate the particle size, particle morphology, and elemental analysis. SEM indicated the formation of particles with non-uniform shape and size distribution, while EDX confirmed the presence of Fe, Ti and oxygen in their elemental state. The surface effects were investigated by Fourier transform infrared radiation (FTIR) and impedance spectroscopy (IS) at room temperature. IS confirmed the co-existence of grains and grain boundaries. Thus, FTIR and IS analysis helped establish a correlation between enhanced surface activity and the synthesis route adopted. It was established that the surface activity was sensitive to the synthesis route adopted. The sample density, variation in grain size, and electrical resistivity were linked with surface defects, and these defects were related to temperature. The disorder and defects created trap centers at the sample’s surface, leading to adsorption of CO2 from the environment.

Details

ISSN :
19961944
Volume :
15
Database :
OpenAIRE
Journal :
Materials
Accession number :
edsair.doi.dedup.....92fe489c407e3d78a37ac0a3cc18baf7
Full Text :
https://doi.org/10.3390/ma15165768