Back to Search
Start Over
Rapid and Quantitative Protein Precipitation for Proteome Analysis by Mass Spectrometry
- Source :
- Journal of proteome research. 19(5)
- Publication Year :
- 2020
-
Abstract
- Protein precipitation is a common front-end preparation strategy for proteome analysis, as well as other applications (e.g., protein depletion for small molecule analysis, bulk commercial preparation of protein). Highly variable conditions used to precipitate proteins, ranging in solvent type, strength, time, and temperature, reflect inconsistent and low recovery. As a consequence, incomplete proteome coverage diminishes the utility of precipitation for proteome sample preparation ahead of mass spectrometry. We herein investigate and optimize the conditions affecting protein recovery through precipitation using acetone at a defined ionic strength. By increasing the salt concentration and incubation temperature with 80% acetone, we show that rapid (2 min) precipitation provides consistently high protein recovery (98 ± 1%) of complex proteome extracts. Rapid precipitation is also applicable to isolate dilute proteins starting as low as 1 μg mL-1. Furthermore, analysis of the protein pellet by bottom-up mass spectrometry (MS) reveals unbiased recovery of all proteins with respect to molecular weight, isoelectric point (pI), and hydrophobicity. Our robust strategy to isolate proteins maximizes recovery and throughput, exploiting the analytical advantages of precipitation over alternative techniques. Data are available via ProteomeXchange with identifier PXD015674.
- Subjects :
- 0301 basic medicine
Chromatography
030102 biochemistry & molecular biology
Proteome
Chemistry
Precipitation (chemistry)
General Chemistry
Mass spectrometry
Biochemistry
Mass Spectrometry
Acetone
Molecular Weight
03 medical and health sciences
030104 developmental biology
Isoelectric point
Ionic strength
Solvents
Protein precipitation
Chemical Precipitation
Sample preparation
Bottom-up proteomics
Subjects
Details
- ISSN :
- 15353907
- Volume :
- 19
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- Journal of proteome research
- Accession number :
- edsair.doi.dedup.....92c97463a22d845b0c738e0389627115