Back to Search Start Over

Independent Feedback Vertex Sets for Graphs of Bounded Diameter

Authors :
Marthe Bonamy
Daniël Paulusma
Konrad K. Dabrowski
Carl Feghali
Matthew Johnson
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université Sciences et Technologies - Bordeaux 1-Université Bordeaux Segalen - Bordeaux 2
Department of Computer Science
Durham University
Department of Informatics [Bergen] (UiB)
University of Bergen (UiB)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
Source :
Information processing letters, 2018, Vol.131, pp.26-32 [Peer Reviewed Journal], CoRR, CoRR, 2017, abs/1707.09383, Inf. Process. Lett., Inf. Process. Lett., 2018, 131, pp.26--32. ⟨10.1016/j.ipl.2017.11.004⟩
Publication Year :
2017

Abstract

The Near-Bipartiteness problem is that of deciding whether or not the vertices of a graph can be partitioned into sets $A$ and $B$, where $A$ is an independent set and $B$ induces a forest. The set $A$ in such a partition is said to be an independent feedback vertex set. Yang and Yuan proved that Near-Bipartiteness is polynomial-time solvable for graphs of diameter 2 and NP-complete for graphs of diameter 4. We show that Near-Bipartiteness is NP-complete for graphs of diameter 3, resolving their open problem. We also generalise their result for diameter 2 by proving that even the problem of computing a minimum independent feedback vertex is polynomial-time solvable for graphs of diameter 2.

Details

Language :
English
Database :
OpenAIRE
Journal :
Information processing letters, 2018, Vol.131, pp.26-32 [Peer Reviewed Journal], CoRR, CoRR, 2017, abs/1707.09383, Inf. Process. Lett., Inf. Process. Lett., 2018, 131, pp.26--32. ⟨10.1016/j.ipl.2017.11.004⟩
Accession number :
edsair.doi.dedup.....92bbba2a83edd71ac1678afaf36caec7
Full Text :
https://doi.org/10.1016/j.ipl.2017.11.004⟩